
VC-Dimension of Rule Sets

Olcay Taner Yıldız
Department of

Computer Engineering

Işık University

Istanbul

Email: olcaytaner@isikun.edu.tr

Abstract—In this paper, we give and prove lower bounds of
the VC-dimension of the rule set hypothesis class where the input
features are binary or continuous. The VC-dimension of the rule
set depends on the VC-dimension values of its rules and the
number of inputs.

Index Terms—VC-Dimension, Rule sets

I. INTRODUCTION

Rule induction, an old branch of machine learning, is
concentrated on extracting rule sets from data. A rule set
is typically composed of an ordered list of rules, where a
rule is composed of a conjunction of a list of conditions [1].
Depending on the type of the input attribute, the conditions
are of the form

• xi = v: if xi is discrete
• xi ≤ θ or xi > θ: if xi is continuous

A rule is said to cover an instance, if that instance satisfies
all conditions in that rule. Each rule is associated with a class
label, and class label of the first covering rule is assigned to
an instance. If none of the rules cover an instance, the default
class label is assigned to that instance. An example rule set
composed of three rules is given below.

If x2 = 0 and x4 = 0 Then C1

Else
If x1 = 1 and x3 = 0 and x5 = 1 Then C1

Else

If x1 = 0 Then C1

Else C0

Well known rule induction algorithms are C4.5Rules [2],
PART [3], CN2 [4] and Ripper [5]. C4.5Rules generates a
decision tree and then transforms it to a set of rules by writing
each path from the root to a leaf as a rule; PART grows a
partial decision tree and extracts a single rule from the best
performing leaf; Ripper and CN2 directly produce a set of
rules.

There are two main groups of rule induction algorithms:
Separate-and-conquer algorithms and divide-and-conquer al-
gorithms. This paper is mainly related with the algorithms
following separate and conquer strategy [1]. According to this
strategy, when a rule is learned for class Ci, the covered
examples are removed from the training set. This procedure
proceeds until no examples remain from class Ci in the
training set. If we have two classes, we separate positive

0

1

2

3

0 1 2 3

! !
!
!

!

!!

!

!

!

!
!

!

!

!

!
"
"

"

""
"

"
"

"

"

If (x1 < 3) and (x2 < 1)
Then class = !

Else

If (x1 > 1.5) and (x2 < 1.5)
Then class = !

Else

If (x1 < 1.5)
Then class = !

Else

If (x1 > 3)
Then class = !

Else class = "

Fig. 1. For a specific class ordering, separation of data and learned ruleset.

class from negative class. But if we have K > 2 classes,
as a heuristic, every class is classified in the order of their
increasing prior probabilities, i.e., in the order of their sample
size.

Ripper, as an example of separate-and-conquer strategy of
algorithms, learns rules to separate a positive class from a
negative class. In Figure I we see an example case, where
Ripper first learn rules to separate class ! from both classes
! and ", then learn rules to separate class ! from class ".

Vapnik-Chervonenkis (VC) dimension is a measure of com-
plexity defined for any hypothesis class, that is, class of
functions [6]. VC dimension for a class of functions f(x,α),
where α denotes the parameter vector, is defined to be the
largest number of points that can be shattered by members of
f(x,α). A set of data points is shattered by a class of functions
f(x,α) if for all assignments of class labels to those points,
one can find a member of f(x,α) which makes no errors

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.615

3576

when evaluating that set of data points. For example, in two
dimensions, we can separate three points with a line, but we
can not separate four points (if the assignments of class labels
are done like in the famous XOR problem). Therefore, the VC
dimension of the linear estimator class in two dimensions is
3.

In this work, we use rule sets with binary or continuous
input attributes as our hypothesis classes. In this case, α
corresponds to a vector of condition counts, representing
the number of conditions in each rule. For example, the
rule set given above is an element of the hypothesis class
f(x, [2, 3, 1]3), where the first, second, and third rules have 2,
3, and 1 conditions respectively.

As far as our knowledge, there is no explicit formula for the
VC-dimension of a rule set. On the contrary, there are certain
results for the VC-dimension of decision trees [7], [8], [9].
These bounds are either structure independent, that is, they
give the same bound for all decision trees with N nodes; or
the bounds are for particular type of univariate trees. In our
previous work, we proved structure dependent lower bounds
of the VC-dimension of univariate decision trees with binary
features [10].

Our approach is the following: First, for four basic rule
set structures, we give and prove a lower bound of the VC-
dimension. Second, we give and prove a general lower bound
of the VC-dimension of the rule set with binary features.
Third, based on those theorems, we give an algorithm to find
a structure dependent lower bound of the VC-dimension of a
rule set with binary features. As a last step, we generalize our
work to include continuous data, that is continuous rule set
hypothesis class. We again give an algorithm to find a lower
bound of the VC-dimension of a rule set for continuous data
sets.

Note that we are discussing the VC dimension of hypotheses
classes defined as families of rule set that share the rule set
structure and differ only in the variables being tested in the
internal decision conditions.

This paper is organized as follows: In Section II, we give
and prove the lower bounds of the VC-dimension of the
rule sets with binary features. We generalize our work to
continuous rule sets in Section III and conclude in Section
IV.

II. VC-DIMENSION OF THE RULE SETS WITH BINARY

FEATURES

We consider the well-known supervised learning setting
where the rule set algorithm uses a sample of m labeled points
S = (X,Y) = ((x(1), y(1)), . . . , (x(m), y(m)) ∈ (X × Y)m,
where X is the input space and Y the label set, which is
{0, 1}. The input space X is a vectorial space of dimension
d, the number of features, where each feature can take values
from {0, 1}.

Each rule set R is represented with a vector R =
[r1, r2, . . . , rk]k, where there are r1, r2, . . ., rk conditions in
the first, second, . . ., kth rule respectively. Note again that we
are searching the VC dimension of rule set hypotheses class

that share the rule set structure and differ only in the function
being tested in the decision conditions.

Theorem 1: The VC-dimension of rule set R1 = [1]1 (a
single rule composed of a single decision condition) that
classifies d dimensional binary data is $log2(d+ 1)%+ 1.

X =

d1 d2 d3 d4 d5 d6 d7
x(1) 1 0 0 0 1 1 1

x(2) 0 1 0 0 1 0 0

x(3) 0 0 1 0 0 1 0

x(4) 0 0 0 1 0 0 1

If x5 = 1 Then C1

Else C0

If x3 = 1 Then C1

Else C0

Fig. 2. Example for Theorem 1 with d = 7 and m = 4. If the class labeling
of S is {1, 1, 0, 0} we select feature 5 (left rule set). If the class labeling of
S is {0, 0, 1, 0} we select feature 3 (right rule set).

Proof: To show the VC-dimension of the rule set R1 is
at least m, we need to find such a sample S of size m that,
for each possible class labelings of these m points, there is
an instantiation h of our hypothesis class R1 that classifies
it correctly. Let Cm be the matrix of size 2m−1 − 1 × m
which represents all possible division of m data points into
two classes. For m = 4, the matrix C4 is

C4 =





















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1





















We construct the sample S such that

X = C
T
m

that is, each feature di corresponds to a distinct possible
class labeling of m points, implying a one-to-one mapping
between class labelings and features. So for each possible class
labeling, we will choose the rule set hypothesis h which has
the corresponding feature as the feature in the condition (See
Figure 2 for an example).

A sample with m examples can be divided into two classes
in 2m−1 − 1 different ways. If we set the number of features
to that number:

d = 2m−1 − 1

d+ 1 = 2m−1

log2(d+ 1) = m− 1

m = log2(d+ 1) + 1

To show the VC-dimension of rule set R1 is at most
$log2(d+ 1)% + 1, we go in reverse direction. If the VC-
dimension of the rule set R1 is m, for each possible class

3577

combination of m examples, we must be able to separate them
into two classes. In the rule set R1, we can use at most d
possible orthogonal splits. A sample with m examples can
be divided into two classes in 2m−1 − 1 different ways. In
order to be able to separate m instances for each possible
class combination, the total number of splits must be at least
as large as the number of possible class divisions. So,

d ≥ 2m−1 − 1

m ≤ log2(d+ 1) + 1

Theorem 2: The VC-dimension of of rule set R2 = [h]1 (a
single rule composed of a h decision conditions) that classifies

d dimensional binary data is
⌊

log2

(

(

d
h

)

+ 1
)⌋

+ 1.

Proof: The proof is similar to the proof of Theorem 1.
We only give the reverse direction. If the VC-dimension of
R2 is m, for each possible class combination of m examples,
we must be able to separate them into two classes. In R2, we
can have at most

(

d
h

)

possible orthogonal splits corresponding
to selected h of d features. A sample with m examples can
be divided into two classes in 2m−1 − 1 different ways. In
order to be able to separate m instances for each possible
class combination, the total number of splits must be at least
as large as the number of possible class divisions. So,

(

d

h

)

≥ 2m−1 − 1

m ≤ log2

((

d

h

)

+ 1

)

+ 1

Theorem 3: The VC-dimension of rule set R3 =
[1, 1, . . . , 1]k that classifies d dimensional binary data is
at least $log2(d− k + 2)%+ k.

Proof: Similar to the Theorem 1, we produce a sample S
such that, for each possible class labelings of this sample, there
is an instantiation h of our hypothesis class R3 that classifies
the sample correctly. We construct the sample S such that

X =

[

CT
m 0

0 Ik−1

]

where Ik−1 shows the identity matrix of size k − 1× k − 1.

Here, we proceed in a bottom-up fashion. The bottom node
can classify m examples by setting up 2m−1 − 1 features to
produce a one-to-one mapping between class labelings and
those features (See Theorem 1). We also add one feature and
one example for each remaining node, where the value of
the new feature is 1 for the corresponding example and 0
for the remaining examples (See Figure 3 for an example).
The classification of the sample goes as follows: k − 1 rules
(which have a single decision condition) will select the new
k − 1 features respectively as the features in their decision
conditions so that each added example will be covered by that
rule alone. The remaining m examples will be forwarded to
the bottom rule, where that rule and else part can classify those

X =

d1 d2 d3 d4 d5 d6 d7
x(1) 1 0 1 0 0 0 0

x(2) 0 1 1 0 0 0 0

x(3) 0 0 0 0 0 0 0

x(4) 0 0 0 1 0 0 0

x(5) 0 0 0 0 1 0 0

x(6) 0 0 0 0 0 1 0

x(7) 0 0 0 0 0 0 1

If x7 = 1 Then Cx

Else
If x6 = 1 Then Cx

Else

If x5 = 1 Then Cx

Else

If x4 = 1 Then Cx

Else
If x3 = 0 Then C0

Else C1

Fig. 3. Example for Theorem 3 with d = 7 and m = 7. If the class labeling
of S is {1, 1, 0, x, x, x, x} we select feature 3 in the bottom rule. The
labelings of the last four examples do not matter since they are alone in the
rules they reside.

examples whatever their class combination is. The number of
features is,

d = 2m−1 − 1 + k − 1

d− k + 2 = 2m−1

m = log2(d− k + 2) + 1

So the VC-dimension of the hypothesis class R3 is at least
(m+ k − 1), that is $log2(d− k + 2)%+ k.

Theorem 4: The VC-dimension of rule set R4 =
[h, h, . . . , h]2h−1 that classifies d dimensional binary
data is at least 2h−1($log2(d− h+ 2)%+ 1).

Proof: Let Bx,m,d be the matrix of size m × d which
contains m identical rows of binary representation of integer
x. For example, the matrix B6,5,3 is

B6,5,3 =













1 1 0
1 1 0
1 1 0
1 1 0
1 1 0













We construct the sample S such that

X =









CT
m B0,m,h−1

CT
m B1,m,h−1

.
CT

m B2h−1
−1,m,h−1









Each of 2h−1 rules,

(I) contains a possible combination of values of h−1 features
(See Figure 4 for an example), and

3578

X =

d1 d2 d3 d4 d5
x(1) 1 0 1 0 0

x(2) 0 1 1 0 0

x(3) 0 0 0 0 0

x(4) 1 0 1 0 1

x(5) 0 1 1 0 1

x(6) 0 0 0 0 1

x(7) 1 0 1 1 0

x(8) 0 1 1 1 0

x(9) 0 0 0 1 0

x(10) 1 0 1 1 1

x(11) 0 1 1 1 1

x(12) 0 0 0 1 1

If x4 = 0 and x5 = 0 and x3 = 0 Then C0

Else
If x4 = 0 and x5 = 1 and x1 = 0 Then C0

Else

If x4 = 1 and x5 = 0 and x2 = 0 Then C0

Else

If x4 = 1 and x5 = 1 and x1 = 0 Then C0

Else C1

Fig. 4. Example for Theorem 4 with d = 5 and m = 12. Using features
4 and 5 as the first two features in all rules, one divides the class labelings
into 4 subproblems of m = 3. Each subproblem can then be shattered with a
single condition. For the example rule, the class labeling of S is {1, 1, 0, 1,
0, 0, 0, 1, 0, 1, 0, 0}.

(II) can classify m examples by setting up 2m−1−1 features
to produce a one-to-one mapping between class labelings
and those features (See Theorem 1).

This way each rule can be labeled as a h − 1 digit binary
number (I) and can shatter m examples by selecting appropri-
ate feature and value in the last condition (II). The number of
features is,

d = 2m−1 − 1 + h− 1

d− h+ 2 = 2m−1

m = log2(d− h+ 2) + 1

So the VC-dimension of the rule set R4 is at least 2h−1m,
that is 2h−1($log2(d− h+ 2)%+ 1).

Theorem 5: The VC-dimension of a rule set with binary
features that classifies d dimensional binary data is at least
the maximum of the sum of the VC-dimensions of its sub
rule sets those classifying d− 1 dimensional binary data.

Proof: Let the VC-dimension of two rule sets (Ra =
[r1, r2, . . . , rk]k and Rb = [s1, s2, . . . , sl]l) be V Ca and V Cb

respectively. Under this assumption, those rule sets can classify
V Ca and V Cb examples under all possible class labelings of
those examples. Now we form the following rule set: We add
a new feature f to the dataset and use that feature as the last
condition of each rule in both rulesets Ra = [r1 + 1, r2 +
1, . . . , rk + 1]k and Rb = [s1 + 1, s2 + 1, . . . , sl + 1]l. The
conditions that will be added to the rule sets Ra and Rb will be

int VC-Dimension1(R = [r1, r2, . . . , rk]k, d)
1 if k = 1 and r1 = 1
2 return $log2(d+ 1)%+ 1
3 if k = 1 and r1 != 1

4 return
⌊

log2

(

(

d
r1

)

+ 1
)⌋

+ 1

5 max = 0
6 for i = 1 to k - 1
7 s = VC-Dimension1([r1 − 1, . . . , ri − 1], d− 1) +

VC-Dimension1([ri+1 − 1, . . . , rk − 1], d− 1)
8 if s > max
9 max = s
10 return max

Fig. 5. The pseudocode of the recursive algorithm for finding a lower bound
of the VC-dimension of a rule set for binary data: R: Rule set hypothesis
class, d: Number of inputs

of the form xf = 0 and xf = 1 respectively. Then we combine
the new rules of rulesets Ra and Rb to form the new rule set
Rc = [r1+1, r2+1, . . . , rk+1, s1+1, s2+1, . . . , sl+1]k+l,
where rules of rule set Rb follow the rules of rule set Ra.
Now the rule set can classify at least V Ca + V Cb examples
for all possible class labelings of those examples.

Using the above idea, the VC-dimension of rule set R5 =
[r1, r2, . . . , rk]k will be the maximum of the sum of the VC-
dimensions of rule sets

• Ra = [r1 − 1]1 and Rb = [r2 − 1, . . . , rk − 1]k−1

• Ra = [r1− 1, r2− 1]2 and Rb = [r3− 1, . . . , rk − 1]k−2

• . . .
• Ra = [r1−1, . . . , rk−2−1]k−2 and Rb = [rk−1−1, rk−

1]2
• Ra = [r1 − 1, . . . , rk−1 − 1]k−1 and Rb = [rk − 1]1

Figure 5 shows the recursive algorithm that calculates a
lower bound for the VC-dimension of an arbitrary rule set
using Theorems 1, 2 and 5. There are two base cases; (i) the
rule set contains only one rule of one condition (Theorem 1),
(ii) the rule set contains one rule of r1 conditions (Theorem
2).

III. VC-DIMENSION OF RULE SETS WITH CONTINUOUS

FEATURES

Until now, we considered the VC-dimension of rule sets
with binary attributes. In this section, we generalize our idea
to rule sets with continuous features. For this case, the input
space X is a vectorial space of dimension d, where each
feature di can take values from continuous real space. We
assume that, for at least one feature di, all instances have
distinct values.

Corollary 1: The VC-dimension of rule set R1 = [1]1
that classifies d dimensional continuous data is at least
$log2(d+ 1)%+ 1.

Proof: The proof directly follows the proof of Theorem
1 given a slight modification. We construct the sample S such

3579

X =

d1 d2 d3 d4 d5 d6 d7
x(1) 1.3 0.2 0.1 0.4 1.7 1.4 1.7

x(2) 0.9 1.3 0.7 0.1 1.1 0.1 0.1

x(3) 0.5 0.8 1.4 0.9 0.6 1.8 0.6

x(4) 0.6 0.6 0.3 1.8 0.3 0.3 1.8

If x5 ≤ 1 Then C0

Else C1

If x3 ≤ 1 Then C0

Else C1

Fig. 6. Example for Corollary 1 with d = 7 and m = 4. If the class labeling
of S is {1, 1, 0, 0} we select feature 5 and the split x5 ≤ 1 (left rule set). If
the class labeling of S is {0, 0, 1, 0} we select feature 3 and the split x3 ≤ 1

(right rule set).

that

X = C
T
m +Rm

where Rm is a random matrix of size m×2m−1−1 containing
random values from the interval (0, 1). Given such an X,
⌊

x
(t)
i

⌋

will correspond to a possible class labeling of x(t),

implying a one-to-one mapping between class labelings and
features. So for each possible class labeling, we will choose
the rule set hypothesis h which has the corresponding feature
as the split feature and the split is xi ≤ 1 (See Figure 6 for
an example).

Corollary 2: The VC-dimension of rule set R2 = [h]1
that classifies d dimensional continuous data is at least
⌊

log2

(

(

d
h

)

+ 1
)⌋

+ 1.

Proof: The proof directly directly follows the proof of
Theorem 2 with the same modification in Corollary 1.

Figure 7 shows the recursive algorithm that calculates a
lower bound for the VC-dimension of an arbitrary rule set for
continuous data using Corollary 2. We spare one feature and
two conditions for dividing the instances into subproblems.
The remaining features and conditions are used to separate
the instances in each subproblem. We set the values of the
spared feature in increasing order from up to down, that is, the
instances forwarded to the uppermost/lowermost rule will have
the smallest/largest value in that spared feature (See Figure
8 for an example). For this reason, when we encounter a
rule with ri condition in a binary data set, the VC-dimension

is
⌊

log2

(

(

d
ri

)

+ 1
)⌋

+ 1, where d represents the remaining

features for that rule, whereas when we encounter a rule with
ri condition in a continuous data set, the VC-dimension is
⌊

log2

(

(

d−1
ri−2

)

+ 1
)⌋

+ 1, where d represents the number of

all features in that data set.

IV. CONCLUSION

In this paper we try to extend the work on VC-dimension in
statistical learning theory, where there is no explicit formula
for the VC-dimension of a rule set. In this work, we focused
on the easiest case of rule sets defined on datasets with
binary features. Starting from basic rule set with a single
rule consisting of a single decision condition, we give and
prove lower bounds of the VC-dimension of different rule set

int VC-Dimension2(R = [r1, r2, . . . , rk]k)
1 sum = 0
2 for i = 1 to k do

3 sum +=
⌊

log2

(

(

d−1
ri−2

)

+ 1
)⌋

+ 1

4 return sum

Fig. 7. The pseudocode of the algorithm for finding a lower bound of the
VC-dimension of a rule set for continuous data: R: Rule set hypothesis class

X =

d1 d2 d3 d4
x(1) 1.3 0.5 1.3 0.2

x(2) 0.8 1.5 1.6 0.3

x(3) 0.7 0.8 0.4 0.2

x(4) 1.4 0.3 1.2 0.7

x(5) 0.6 1.3 1.5 0.9

x(6) 0.5 0.5 0.6 0.7

x(7) 1.3 0.6 1.5 1.2

x(8) 0.7 1.6 1.3 1.4

x(9) 0.9 0.2 0.7 1.3

x(10) 1.4 0.7 1.3 1.7

x(11) 0.7 1.6 1.6 1.8

x(12) 0.6 0.8 0.3 1.6

If x4 > 0 and x4 ≤ 0.5 and x3 ≤ 1.0 Then C0

Else

If x4 > 0.5 and x4 ≤ 1.0 and x1 ≤ 1 Then C0

Else
If x4 > 1.0 and x4 ≤ 1.5 and x2 ≤ 1 Then C0

Else

If x4 > 1.5 and x4 ≤ 2.0 and x1 ≤ 1 Then C0

Else C1

Fig. 8. Example for algorithm VC-Dimension2 in Figure 7 for continuous
data with d = 4 and m = 12. Using the spared feature 4 in all rules, one
divides the class labelings into 4 subproblems of m = 3. Each subproblem
can then be shattered with the remaining features. For the example rule, the
class labeling of S is {1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0}.

structures. We also show that our approach can be generalized
to rule sets defined on datasets with continuous features. In
general, we prove that the VC-dimension of a rule set depends
on the number of features and the rule set structure.

REFERENCES

[1] J. Fürnkranz, “Separate-and-conquer learning,” Artificial Intelligence
Review, vol. 13, pp. 3–54, 1999.

[2] J. R. Quinlan, C4.5: Programs for Machine Learning. San Meteo, CA:
Morgan Kaufmann, 1993.

[3] E. Frank and I. H. Witten, “Generating accurate rule sets without global
optimization,” in Proceedings of the 15th International Conference on
Machine Learning, 1998, pp. 144–151.

[4] P. Clark and R. Boswell, “Rule induction with CN2: Some recent
improvements,” in Lecture Notes in Artificial Intelligence, vol. 482,
1990, pp. 151–163.

[5] W. W. Cohen, “Fast effective rule induction,” in The Twelfth Interna-
tional Conference on Machine Learning, 1995, pp. 115–123.

[6] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer Verlag, 1995.

3580

[7] Y. Mansour, “Pessimistic decision tree pruning based on tree size,” in
Proceedings of the 14th international conference on Machine learning,
1997.

[8] H. U. Simon, “The vapnik-chervonenkis dimension of decision trees
with bounded rank,” Information Processing Letters, vol. 39, no. 3, pp.
137–141, 1991.

[9] O. Maimon and L. Rokach, “Improving supervised learning by feature

decomposition,” in Proceedings of the Second International Symposium
on Foundations of Information and Knowledge Systems, 2002, pp. 178–
196.

[10] O. T. Yıldız, “On the vc-dimension of univariate decision trees,” in 1st
International Conference on Pattern Recognition and Methods, 2012,
pp. 205–210.

3581

