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Abstract 3. Pulsatility i:ndex (PI) 

This study concentrates on  the comparison of the dis- 
criminant functions and the decision tree induction 
techniques an antepartum fetal evaluation. These clas- 
sification techniques are applied t o  antenatal fetal risk 
assessment problem and the performances, the compu- 
tational complexities and the importance of each tech- 
nique in terms of diagnostic clues are observed. The  
task is  to  investigate the doppler ultrasound measure- 
ments  of umbilical artery ( U A )  t o  relate the health con- 
ditions of fetuses using discriminant functions such as 
linear discriminant functions (LDF), multilayer per- 
ceptron (MLP),. decision trees (C4.5, CART) and neu- 
ral trees. W e  use the following UA blood f low veloc- 
i ty  waveforms: pulsatility index (PI), resistance in- 
dex ( R I )  and systolic/diastolic ratio (S/D) in terms 

decide i f  there is any  hypoxia suspicion. It is  observed 
that the performances of M L P  and CART are better 
but (34.5 defines understandable diagnostic clues. O n  
the other hand, the t ime  complexity of LDF and (74.5 
are becomes favorable. Experiments support that C4.5, 
MLP, CART and neural trees are favorable medical 
aids to  phycisians during intensive surveilance of fe- 
tuses. With the limited number of indices, we obtain a 
specificity and sensitivity of 100% and 93% with these 
decision techniques. 

of weeks (week index: WI as a normalized value) to 

1 Introduction 

Several studies have already demonstrated the possi- 
bilities and limits of using umbilical doppler for the 
assessment of fetal growth [1]-[7]. The most commonly 
used indices are: 

1. Systolic/diastolic (S/D) ratio 

2. Resistance index (RI) 

where PI = && and R I  = y .  These indices 
are defined by using the blood flow velocity waveform 
and are indepencient of the angle between the ultra- 
sound beam and .the direction of blood flow. 

In these studies (luring pregnancy follow up of IUGR 
fetuses, it has been shown that increased impedance to  
flow in the UA is associated with fetal hypoxemia and 
acidemia [1]-[4], 131. Later, it has also been shown that 
indices of middle cerebral artery (MCA) and umbili- 
cal resistance index to cerebral resistance index ratio 
(URI/CRI) are iinportant for fetal monitoring [1]-[7]. 
Even though, the effectiveness of the other indices such 
as middle cerebral artery (MCA) are known to be use- 
ful, we, in this study, only make use of UA indices for a 

decision tree indiction. The results can be extented 
for the other important indices of fetal monitoring. 

On the other hand, in recent years, the family of meth- 
ods suitable for classification problems has been ex- 
tended to include a range of new techniques, such 
as discriminant functions and decision tree induction. 
Our purpose here is to make a comparison of these clas- 
sification techniques in antepartum fetal evaluation. 
Briefly, we employ doppler ultrasound measurements 
of umbilical artery (UA), then, discuss the usage of dis- 
criminant functicns and decision tree induction for the 
assessment of hypoxic conditions. Section 2 presents 
the proposed monitoring system for fetal health. Sec- 
tion 3 presents decision by discriminant functions such 
as linear discriminant analysis (LDA) and multilayer 
perceptron (MLI’). Section 4 introduces decision tree 
induction techniques such as C4.5, CART and neural 
trees. Section 5 defines the relationship between the 
discrimination functions and decision trees. Section 6 
introduces the experiments, the results and the diag- 
nostic outcomes of these techniques. Finally, the dis- 

comparison purpose of the discriminant functions and 
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Table 1: PI, RI, S/D ratio for UA between 20 and 40 
weeks[l] 

22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

S/D ratio 
4.40 
3.95 
3.60 
3.40 
3.20 
3.00 
2.80 
2.65 
2.55 
2.40 
2.20 

cussion and conclusions are made in the Section 7. 

2 Fetal risk assessment system for antenatal 
care 

The antenatal care system receives weekly doppler ul- 
trasound examinations [l] as input and produces an 
output correlated with clinical conditions. Our study 
employs UA measurements and defines feature vectors 
by using weekly ultrasound values that are PI, RI, S/D 
and WI. The PI, RI and S/D are based on pulsatil- 
i t y  which is defined as the difference between the peak 
systolic and end-diastolic components of the maximum 
frequency shift and the end-diastolic component itself 
[3]-[5]. The WI is the normalized gestational age in 
terms of weeks between 0 to 40 [8]. The UA doppler 
examinations of pregnant women in the range between 
20 and 40 weeks are shown in Table 1. 

The proposed system uses only the UA indices to have 
an assessment about the risk of fetal hypoxic condi- 
tions. We monitor the patterns of the data to see the ef- 
fect of the specific measurements on the hypoxia. Then, 
we use decision techniques such as discriminant func- 
tions LDA and MLP and decision trees C4.5 and CART 
to classify the fetal conditions with these indices. As 
mentioned previously, the other doppler measurements 
such as MCA, URI/CRI generally improve the perfor- 
mance and the quality of the assessment decision. 

3 Decision by discriminant functions 

Discriminant function analysis has been an important 
decision tool for various pattern recognition applica- 
tions [lo], [ll], [12], [13]. Discriminant functions gen- 

erally transform input feature space on the directions 
of maximum separability. Discriminant analysis is a 
technique for identifying the ”best” set of attributes or 
variables, known as the discriminator for an optimal de- 
cision. We can define the discriminant functions in var- 
ious degrees of polynomials such as linear, quadratic. 

3.1 Decision by Linear Discriminant functions 

The linear discriminant is the first order polynomial 
that is used for decision. The classifier can be obtained 
as a result of the application of Bayes rule to the prob- 
lem of classification under the following assumptions: 

(LDF) 

0 the data are normally distributed classes: 
Nl(p1,  cl), Nz(p2, C2) where ,U’S are mean vec- 
tors and x’s are covariance matrices. 

0 the covariance matrices of every class are equal: 
Cl = cz = c. 

With these assumptions, a LDF is computed as: 

-1 

Y = (Pl - P2)’ x 

These assumptions impose restrictions to problems to 
which LDF are applied. But it is known that, despite 
these restrictions, the LDF still performs well on data 
which is only approximately normally distributed, and 
where the classes have different covariances. 

0 O\LDF . 
xi 

Figure 1: Discriminant functions LDF and MLP 

3.2 Decision by nonlinear discriminant func- 
tions 
We use a nonlinear discriminant function to draw de- 
cision boundaries between class regions. As an exam- 
ple case, we utilize multilayer perceptrons (MLP) with 
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sigmoidal transfer function [14], [15], [16]. The feedfor- 
ward network learns from the input data by the super- 
vision of the output data creating single linear discrim- 
inant functions by each sigmoid hidden unit and then 
combines them. Thus, this piecewise linear discrimi- 
nant function works as a nonlinear discriminator. 

For training a MLP, the error back-propagation (BP) 
has become very popular [14]. The back-propagation 
is an optimization technique for implementing gradient 
descent in weight space for multilayer feedforward net- 
works. The basic idea of the technique is to efficiently 
compute partial derivatives of an approximating func- 
tion F ( w ; x )  realized by the network with respect to 
all the elements of the adjustable weight vector w for a 
given value of input vector x and output vector y .  The 
weights are adjusted to fit linear piecewise discriminant 
functions to feature space for the best class separabil- 
ity. The difference between the network's output and 
the supervisor output is minimized according to a pre- 
defined error function (performance criterion) such as 
mean square error (MSE) (2) etc. The error function 
helps to place the discriminators to right location and 
positions: 

M S E  = x ( y e  - F(w;  (2) 
Q 

4 Decision by decision tree induction 
techniques 

Decision tree construction algorithms are greedy in 
that at each step, we decide on a decision node that 
best splits the data for classification. Different' de- 
cision tree learning methods differ in the way they 
make decisions at a node. In a univariate decision 
tree, at each node, only one feature is used. If 
the feature is continuous, the decision is of the form 

making a binary split where xi is the ith input feature 
and Ck is a suitably chosen threshold. If xi is discrete 
valued with m values, then the node makes an m-ary 
split. A univariate test using feature xi can only split 
a space with a boundary that is orthogonal to xi axis. 
This can result in large trees and poor generalization. 

21 > ck 

In a multivariate decision tree, each decision node is 
based on more than one feature. The linear multi- 
variate tree-constructing algorithms select not the best 
attribute but the best linear combination of the at- 
tributes. The decision at each node is of the form 

where wi are the weights, and WO is a threshold. 
xf=i wixi > W O  

4.1 Decision by C4.5 
Univariate decisicn tree construction algorithm C4.5 
[17] learns attributes by constructing them top-down 
manner starting with selecting the best attribute to 
test at the root of the tree. To find the best attribute, 
each instance attribute is put into a statistical test to 
determine how wt:ll it alone classifies the training ex- 
amples. The best feature is selected and used as a test 
node of the tree. A child of the root node is then cre- 
ated for each possible value of the attribute namely two 
children for ordered features as xi < a and xi > a,  and 
m children for unlxdered feature as 

xi =: a l ,  xi = a2 . . . xi = a, 

where m is the number of different possible values of 
the feature xi. The entire process is then repeated 
recursively using the training examples associated with 
each child node t o  select the best attribute to test at 
that point in the tree. This form of C4.5 algorithm 
never backtracks and is a greedy search algorithm. 

Figure 2: Sample Univariate Decision Tree for LED Prob- 
lem 

4.2 Decision by CART 
The multivariate decision tree construction algorithm 
CART [18] se1eci;s not the best attribute but the best 
linear combination of the attributes. The linear com- 
bination consists of multiplication of weights wi with 
each feature xi. The main operation in CART is de- 
termining the weights wi of those features. 

CART algorithm for finding the coefficients of the avail- 
able features is a step-wise procedure, where in each 
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step one cycles through the features x1,x2 . . . x, doing 
a search for an improved linear combination split. At 
the beginning of the L'th cycle, let the current linear 
combination split be v 5 c. For fixed y, CART searches 
for the best split of the form: 
v - d(x1 + y) 5 c, such that 

v - c  62- , wherezl + y 2 0 
2 1  +Y 
v - c  6<- , wherexl + y 5 0 

2 1  +y (3) 

The search for 6 is carried out for y = -0.25,0.0,0.25. 
The resulting three splits are compared, using the cho- 
sen partition-merit criterion, and the S and y corre- 
sponding to the best are used to update U, producing: 

U' = wix1 + wix2 . .  . ,where 
w: = w1 - 6 
c' = c + 6y (4) 

\ 

Figure 3: A Step in CART Algorithm 

Figure 3 shows the first step of the CART algorithm 
for an example data set. The initial line is given as 
x1 + 2 2  < 0. The lines shown as -0.25,O and 0.25 are 
the best splits found for y = -0.25,O and 0.25. Here 
only the coefficient of attribute x1 is changed. The line 
with y = 0 will be selected for further iteration. 

This search is repeated for other features 2 2 , 2 3  . . . xn 
to obtain an updated split vl < c1. The final step of the 
cycle is to find the best cl, and the system searches ex- 
plicitly for the split that minimizes the impurity of the 
resulting partition. The cycles end when the reduction 
of impurity is below a constant say e[l8]. 

4.3 Decision by Neural Trees 
The decision at a binary multivariate node is a binary 
classification problem and thus any binary classifier can 

Table 2: Confidence Table for algorithms 

Table 3: Learning times for algorithms (in sec.) 
Learning Time 

TD-LP 
MLP 
LDA 

be used to implement it. Guo and Gelfand (1992) pro- 
pose to use multilayer perceptrons in decision nodes 
which implement multivariate nonlinear decision trees. 
We replaced the multilayer perceptron with a single 
layer, linear perceptron. This type of decision trees, 
where at each decision node there is a linear percep- 
tron is called a Neural Tree. 

5 On the relationship of discrimination 
functions and decision trees 

C4.5 decision tree algorithm constructs a stepwise dis- 
criminator by choosing the best ordered attribute each 
time (Figure 1,2). CART tree algorithm, Neural Trees 
and LDF draws a linear discriminator by the linear 
combination of the same attributes. Finally, MLP de- 
fines a nonlinear discriminator that have the ability 
to draw any discriminator if it is trained properly. In 
general, according to application faced, we can use one 
these techniques by considering data size, computation 
time, and the importance of the solution produced. 

6 Experiments and Results 

In this section, our purpose is to compare the algo- 
rithms with their confidence interval and time com- 
plexity. We test five algorithms using combined 5x2 
cross validation (cv) F test [21]. We partition the data 
into two sets five times: training set and test set and 
we repeat experiments on these sets. We then compare 
the computation times of these algorithms. The set of 
data are used for the experiments: the PI, RI and S/D 
ratio values of UA [l] between 20 and 40 weeks. 
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c4.5 100% 

The result of the F test is shown in Table 2, and the 
learning time of the algorithms are given in Table 3. 
The results show that there is no significant difference 
between the algorithm(s) in terms of accuracy therefore 
we can choose the algorithms with the minimum learn- 
ing time and maximum comprehensibility. Therefore 
we can choose C4.5 algorithm. 

The sensitivity of the test is the probability that the 
test result will be abnormal when the disease is present. 
The specificity of the test is the probability that the test 
result will be normal when the disease is not present. 
The predictive value of an abnormal test (PNT) would 
be that fraction of fetus with an abnormal test result 
who have the abnormal condition, while the predictive 
value of a normal test (PPT) would be the fraction of 
fetus with a normal test result who are normal. Table 4 
shows the Sensitivity, specifity, PPT and PNT results 
of the algorithms. 

In this study, the highest specificity and sensitivity 
of the system is achieved by MLP and CART. The 
other techniques(expecial1y LDA and C4.5) are poorer 
to specify the predicting normal cases while they are 
very good at the predicting abnormal cases. 

Both, the discriminant functions and decision trees of 
pattern recognition are verified to be valuable tools for 
revealing adverse conditions in antenatal fetal risk as- 
sessment. As the nonlinearity of the discriminator in- 
creases, the accuracy of the assessment also improves. 
A MLP, as a nonlinear discriminator, outperforms the 
performances of the LDA and the C4.5 induction, in the 
fetal risk assessment task. Also, in the case of CART, 
Linear combination of attributes (variables) are used 
for the decision induction. It is observed that there is 
a group of discriminators that is constructed with the 
techniques: the outcome of LDA is a linear discrimi- 
nator, C4.5 draws stairs according to the best induced 
features. The CART induces a linear combination of 
the best features for an optimal decision. The MLP, as 
a nonlinear discriminator, draws piecewise linear com- 
binations, in each of them a local optimality is searched 
by training. 

Figure 4: A sample result tree for C4.5 algorithm 
(WI= Featurel, PI= Feature2, RI=Feature3 
,S/D= Feature4) 

7 Discussion and Conclusions 

The study points' the following facts: 

1. The decision trees C4.5, CART and neural trees 
are found to be applicable to the selection of the 
best attributes and/or the combination of them 
to make the best decision for antepartum fetal 
evaluation. 

~ 

2. The discrirninant functions LDA and specifically 
MLP are d.so shown to be effective class discrim- 
inators for the same problem [19], [20]. 

3. The discriminant functions and decision tree in- 
duction techniques produce discriminators. The 
first group obtains an optimal decision by the 
Combination of attributes in the linear or piece- 
wise linear form. The second group obtains sim- 
ilar decision by employing a tree that give the 
result by selection of the best attribute or the 
linear combination of the best attributes. 

4. The MLP, CART and neural trees are found to 

5 .  It is proven that the risk assessment by using the 
doppler ulhasound based indices PI, RI, S/D ra- 
tio of UA ,according to WI can be done with our 
system. The experiments that were performed 
here confirm the observations of the doctors. But 
the special cases also need special attention by 
the doctors: For example, it must be pointed out 

be helpful to support the doctor's decision. 
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Figure 5: A sample result for CART algorithm 

that the PI in the UA may even be raised several 
weeks or months before fetal hypoxia is clinically 
suspected. 

This study points a fruitful line of enquiry for 
helping doctors in the risk assessment of antena- 
tal fetal evaluation. 
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