
Information Sciences 187 (2012) 109–120
Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Eigenclassifiers for combining correlated classifiers

Aydın Ulas� a,⇑,1, Olcay Taner Yıldız b, Ethem Alpaydın a

a Department of Computer Engineering, Boğaziçi University, TR-34342 Bebek, Istanbul, Turkey
b Department of Computer Engineering, Is�ık University, TR-34980 S�ile, Istanbul, Turkey

a r t i c l e i n f o a b s t r a c t
Article history:
Received 2 March 2010
Received in revised form 8 June 2011
Accepted 16 October 2011
Available online 10 November 2011

Keywords:
Classifier correlation
Classifier design and evaluation
Machine learning
0020-0255/$ - see front matter � 2011 Elsevier Inc
doi:10.1016/j.ins.2011.10.024

⇑ Corresponding author. Tel.: +90 212 359 4523/4
E-mail address: ulasmehm@boun.edu.tr (A. Ulas�

1 The author is currently working in Dipartimento
In practice, classifiers in an ensemble are not independent. This paper is the continuation of
our previous work on ensemble subset selection [A. Ulas�, M. Semerci, O.T. Yıldız,
E. Alpaydın, Incremental construction of classifier and discriminant ensembles, Informa-
tion Sciences, 179 (9) (2009) 1298–1318] and has two parts: first, we investigate the effect
of four factors on correlation: (i) algorithms used for training, (ii) hyperparameters of the
algorithms, (iii) resampled training sets, (iv) input feature subsets. Simulations using 14
classifiers on 38 data sets indicate that hyperparameters and overlapping training sets have
higher effect on positive correlation than features and algorithms. Second, we propose
postprocessing before fusing using principal component analysis (PCA) to form uncorre-
lated eigenclassifiers from a set of correlated experts. Combining the information from all
classifiers may be better than subset selection where some base classifiers are pruned
before combination, because using all allows redundancy.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Let us say that we have L experts (learners, base classifiers), with their outputs dj, j = 1, . . . ,L, estimating some unknown
parameter h, for example, the posterior probability of a class for input x in a classification problem: P(Cijx). Let us also say that
our combined estimator d to h is the simple average:
d ¼
PL

j¼1dj

L

It is known that the mean squared error of d in estimating h can be written as the sum of squared bias and variance:
E½ðd� hÞ2� ¼ ðE½d� � hÞ2 þ E½ðd� E½d�Þ2� ¼ Bias2ðdÞ þ VarðdÞ
In the case of a simple average, bias is just the average bias:
E½d� � h ¼
PL

j¼1ðE½dj� � hÞ
L

In stacking [46], a second layer learner is trained to combine the outputs of the given classifiers and therefore also cor-
rects for their bias, but in voting methods, the decrease in error is mostly due to the decrease in variance. We can write the
variance as
. All rights reserved.

524; fax: +90 212 287 2461.
).
di Informatica, Verona, Italy.

http://dx.doi.org/10.1016/j.ins.2011.10.024
mailto:ulasmehm@boun.edu.tr
http://dx.doi.org/10.1016/j.ins.2011.10.024
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

2 Exa
experts
negativ
but also

110 A. Ulas� et al. / Information Sciences 187 (2012) 109–120
VarðdÞ ¼ 1
L2

X
j

VarðdjÞ þ
1
L2

X
i

X
j–i

Covðdi; djÞ ð1Þ
If dj are independent, then their correlation is 0 and the second, covariance term in (1) disappears. In such a case, variance
decreases as L is increased. Indeed, most combination methods aim at generating uncorrelated experts, and it has been pro-
posed [21] to use different (i) learning algorithms, (ii) hyperparameters, (iii) input features, and (iv) training sets. For exam-
ple, Bagging [7] uses bootstrapping to generate slightly different training sets and takes an average for fusion, and it has been
observed that the decrease in error is due to a decrease in variance. The random subspace method [16] trains different ex-
perts with different subsets of a given feature set. Different representations of the same input make different characteristics
explicit and therefore accuracy may be improved by combination [1,11]. It has also been proposed to generate an ensemble
of fuzzy decision trees and take their combination for better accuracy [45]. In measuring the performance of a machine learn-
ing algorithm, accuracy is not always the sole criterion. There are other measures such as the area under ROC curve (AUC) or
F-measure (based on precision and recall); recently, Wang and Dong [44] applied fuzzy entropy maximization instead of
training error minimization to refine fuzzy IF-THEN rules. Tong and Mitram [39] use genetic algorithms to choose between
neural network activation functions and features to increase classifier performance. Wang [43] uses mutual information for
feature selection in combining nearest neighbor classifiers using the fuzzy integral. Ensemble algorithms have been pro-
posed and applied to different problems in different domains [48,47,26,52].

Normally, when we have a number of experts trained on the same data, we expect them to be positively correlated, i.e.,
they will be correct on the same instances and fail on the same difficult (noisy) instances. Looking at (1), we expect then the
variance (and hence the error) to increase as we increase the number of experts. It is therefore critical that any positive cor-
relation between the experts should be found and taken care of.2

Given a set of positively correlated experts, one line of research is in the direction of finding a minimal subset of them as
we studied in our previous work [42]. That is, we are interested in both pruning the inaccurate ones and also to keep a check
on complexity, we want to prune the redundant. ‘‘Diversity’’ measures have been proposed [23,22] and one possibility is to
have an incremental, forward search where we add a classifier to an ensemble if it is diverse or adds to accuracy
[9,11,35,49,42], or another possibility is to have a decremental, backward search where a classifier is removed or pruned
if it is not diverse enough or if its removal does not increase error [30,27]. In this work, we propose an alternative method
which combines base classifiers using principal component analysis (PCA) to get uncorrelated eigenclassifiers.

This current work complements and extends our previous work [42] in two directions: (i) Here, we empirically analyze
the sources of correlation using real data sets and show how the base classifiers trained using these methods differ in their
decisions, and (ii) instead of applying subset selection, that is, keeping some base classifiers and discarding the rest, we opt to
use all the available information by constructing eigenclassifiers that combine all base classifiers. When subset selection is
used, some classifiers/discriminants may be discarded and this results in simpler combinations; it may also prevent extract-
ing features/classifiers which are costly. Unfortunately, it also has the disadvantage of discarding potentially useful informa-
tion. Here, we use all the base classifiers and hence all the information they provide is incorporated in the final decision.

The rest of this paper is organized as follows: The influence of different factors on correlations between experts using
fourteen classifiers and thirty-eight data sets is investigated in Section 2. In Section 3, we propose a method to extract uncor-
related eigenclassifiers from a set of correlated classifiers and show how it works in practice. We conclude in Section 4.

2. Correlation analysis on real data sets

2.1. Algorithms and data sets

We use fourteen base classifiers [42] (trained using six algorithms) which we have chosen to span as much as possible the
wide spectrum of possible machine learning algorithms. All classifiers generate posterior probabilities as their output.

(1)–(3) knn: k-nearest neighbor with k = 1,3,5.
(4)–(8) mlp: Multilayer perceptron where with D inputs and K classes, the number of hidden units is taken as D (ml1), K

(ml2), (D + K)/2 (ml3), D + K (ml4), 2(D + K) (ml5).
(9) lnp: Linear perceptron with softmax outputs trained by gradient-descent to minimize cross-entropy.

(10) c45: The most widely-used C4.5 decision tree algorithm.
(11) mdt: This is a multivariate tree where unlike C4.5 which uses univariate and axis-orthogonal splits uses splits

that are arbitrary hyperplanes using all inputs [50].
(12)–(14) svm: Support vector machines (SVM) with a a linear kernel (svl), polynomial kernel of degree 2 (sv2), and a radial

(Gaussian) kernel (svr). We use the LIBSVM 2.82 library that implements pairwise SVMs [10].
mining (1), we see that in minimizing variance, even better than the case of uncorrelated experts would be the case when we have negatively correlated
[24]. Note however that for the case of mixture of experts, it has been shown that experts which are localized in different parts of the input space are

ely correlated but biased [17]. Comparing AdaBoost [13] with Bagging, we can say that experts trained on previous expert’s errors not only decrease bias
help in constructing negatively correlated experts.

A. Ulas� et al. / Information Sciences 187 (2012) 109–120 111
We use a total of 38 data sets where 35 of them (zoo, iris, tae, hepatitis, wine, flags, glass, heart, haberman, flare, ecoli, bupa,
ionosphere, dermatology, horse, monks, vote, cylinder, balance, australian, credit, breast, pima, tictactoe, cmc, yeast, car, segment,
thyroid, optdigits, spambase, pageblock, pendigits, mushroom, and nursery) are from UCI [4] and 3 (titanic, ringnorm, and two-
norm) are from Delve [31] repositories.

A given data set is first divided into two parts, with 1/3 as the test set, test, and 2/3 as the training set, train-all. This train-
ing set is then resampled using 5 � 2 cross-validation (cv) where 2-fold cv is done five times (with stratification) and the
roles swapped at each fold to generate ten training and validation folds, trai, vali, i = 1, . . . ,10. trai are used to train the base
classifiers. vali are divided into two randomly as val-Ai and val-Bi, where val-Ai are used to train the linear combiner to fuse
base classifier outputs and val-Bi are used for model selection (i.e. finetuning the complexity of the combiner in Section 3).
We always report the accuracies on test, unused for training the base classifiers, combiner or model selection. This processed
data of base classifier outputs is publicly available [51].

To compare the accuracies of different ensemble construction methods for statistically significant difference, we use two
different methodologies. First, for each data set, we use the 5 � 2 cv F test [3] (a = 0.05) which is a parametric test to compare
the methods for each data set; we then use the sign test to check if the numbers of wins/losses over all 38 data sets is sig-
nificant. Second, we use Friedman’s test which is a nonparametric test using the rankings, and if it rejects, we use the Nem-
enyi test as a post hoc test to check for significant difference between methods [12,15].

In the literature, to increase diversity and reduce correlation between learners, it has been proposed to play with four
factors:

1. Learning algorithms used to train the experts.
2. Hyperparameters of the learning algorithms.
3. Resampling due to folding.
4. Subset of input features.

In the next subsection, we check for the effect of these factors experimentally using several data sets.

2.2. Estimating the correlations of classifiers

We train all fourteen algorithms on a training fold, generate their posterior probabilities for the true class on the test set
and calculate correlations between classifier outputs for the true class. The total correlation between two learners i and j is
the sum of correlations on the individual instances
Table 1
Average

kn1
kn3
kn5
ml1
ml2
ml3
ml4
ml5
lnp
mdt
c45
svl
sv2
svr
Total Corr ði; jÞ ¼
X

t

Corr dt
i�;d

t
j�

� �
ð2Þ
where dt
i� denotes the output of learner i for the correct class on instance t. The reason we use only the output for the true

class and not all classes is to (i) be able to average correlations over data sets with different number of classes, and (ii) keep
the analysis simpler. We do this ten times on the ten training folds and calculate the average test correlation for a data set.
We then do this for all 38 data sets and take another average to give a general, data-independent view. This overall corre-
lation matrix is given in Table 1. We believe that a correlation value over 0.6 indicates a strong correlation and such entries
are shown in boldface.

2.2.1. Correlations due to hyperparameters
Almost all learning algorithms have hyperparameters which affect the model complexity and we check for the effect of

these on correlation. Looking at the top-left corner of Table 1, we see the overall correlation matrix achieved by varying k of
correlations over all data sets.

kn1 kn3 kn5 ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr

1.00 0.71 0.64 0.37 0.37 0.37 0.38 0.37 0.38 0.35 0.30 0.39 0.34 0.44
0.71 1.00 0.88 0.51 0.50 0.51 0.51 0.51 0.51 0.45 0.41 0.53 0.45 0.58
0.64 0.88 1.00 0.57 0.56 0.57 0.57 0.57 0.55 0.49 0.45 0.59 0.49 0.64
0.37 0.51 0.57 1.00 0.79 0.81 0.81 0.79 0.67 0.59 0.52 0.75 0.53 0.69
0.37 0.50 0.56 0.79 1.00 0.81 0.79 0.77 0.66 0.62 0.54 0.76 0.52 0.69
0.37 0.51 0.57 0.81 0.81 1.00 0.81 0.81 0.67 0.61 0.53 0.75 0.53 0.70
0.38 0.51 0.57 0.81 0.79 0.81 1.00 0.80 0.67 0.61 0.53 0.75 0.52 0.69
0.37 0.51 0.57 0.79 0.77 0.81 0.80 1.00 0.67 0.60 0.52 0.75 0.53 0.69
0.38 0.51 0.55 0.67 0.66 0.67 0.67 0.67 1.00 0.57 0.48 0.71 0.45 0.63
0.35 0.45 0.49 0.59 0.62 0.61 0.61 0.60 0.57 1.00 0.50 0.64 0.45 0.60
0.30 0.41 0.45 0.52 0.54 0.53 0.53 0.52 0.48 0.50 1.00 0.54 0.43 0.54
0.39 0.53 0.59 0.75 0.76 0.75 0.75 0.75 0.71 0.64 0.54 1.00 0.57 0.74
0.34 0.45 0.49 0.53 0.52 0.53 0.52 0.53 0.45 0.45 0.43 0.57 1.00 0.65
0.44 0.58 0.64 0.69 0.69 0.70 0.69 0.69 0.63 0.60 0.54 0.74 0.65 1.00

112 A. Ulas� et al. / Information Sciences 187 (2012) 109–120
knn. We notice that varying k has a small effect on removing this intragroup correlation. This indicates that if you already
have 3nn in your ensemble, adding 5nn is not a good idea; because they are highly correlated, addition would not increase
accuracy significantly. This observation also supports our previous results when we use subset selection [42]. We rarely see
knn algorithms with different k values ending up in the same ensemble when we use subset selection or in the optimal sub-
set. As other examples, we see a similar behavior when we vary the number of hidden units of mlp or the degree of polyno-
mial kernel of svm, though in this latter case, we see that the classifiers are less correlated when compared with knn variants.

2.2.2. Correlations due to algorithms
There is also correlation depending on how similar the algorithms are: We see that the perceptron variants (lnp and mlp),

linear models (lnp, svl), and the svm variants (svl, sv2, svr) are correlated. We see a clear case of grouping here: The variants of
the same algorithm are grouped with high intragroup correlation and we also see lower but still positive intergroup corre-
lation which makes them more unlikely to end up in a carefully constructed ensemble [42]. For example, there is correlation
between mlp and svm variants, because they both write the discriminant as a sum of multivariate basis functions (hidden
units or implicitly through the kernel function). The correlation between classifier groups decrease as they are less similar
in terms of the models they use, the criteria they optimize, or the method they use for optimization.

2.2.3. Correlations due to sampling
In order to figure out the correlations due to resampling, we calculate the correlation of the fourteen classifiers on the test

set, trained on different training folds and average over them (over 10
2

� �
fold pairs), and average once more over 38 data

sets. The boxplots of correlations for the fourteen algorithms are given in Fig. 1. We see that trees, c45 and mdt, have low
correlations and mlp, knn and svm variants have high correlations (except 1nn); this shows that it makes sense to bag (fuse)
trees but not knn, which is indeed actual practice. Breiman [7] mentions this when he defines the concept of stable algo-
rithms and he says that it makes sense to bag unstable algorithms such as trees but not stable algorithms such as knn.3

We have checked to see if correlation depends on training set size, but there seems to be no dependence.

2.2.4. Correlations due to shared input features
In order to figure out the correlations due to input features used, we calculate the correlation of the fourteen classifiers

trained on randomly chosen half of the original features, but on the whole training set (without folding). Doing this ten times

each time choosing a different subset, we average over the 10
2

� �
pairs on a data set, and average once more over 38 data

sets. The boxplots of correlations for the fourteen algorithms are given in Fig. 2. We can see that there is not much difference
between the algorithms and that the correlation can be anywhere between 0.0 and 1.0, mostly around 0.5. We cannot say
much that is general from these results; this random subspace method [16] can be an effective method (more effective than
resampling or varying the hyperparameter) for generating less correlated experts but there is no guarantee. We have
checked to see if the correlation depends on the input dimensionality; but it seems not to.

2.3. Related work

Tumer and Ghosh [40] give a theoretical analysis of the error using correlated classifiers and analyze the correlation be-
tween ensembles using different diversity creation methods. Using four real world data sets, they measure the effect of the
following factors on the correlation between classifiers in the ensemble: (i) cross validation, (ii) different feature subsets, and
(iii) resampled data. They do not investigate the effect of different algorithms nor hyperparameters of algorithms. Brown
et al. [8] discuss the relation between ambiguity decomposition and the bias/variance/covariance decomposition, presenting
several methods to create diverse classifiers. Theirs is not an empirical study, but they create a taxonomy of ways to create
diverse classifiers. They propose to change (i) starting point in the hypothesis space, (ii) training data, (iii) classifier archi-
tectures, and (iv) traversal of the hypothesis space. In an early work, Kuncheva [20] proposes four different methods to build
a multiclassifier system: (i) using different combiners when already trained base classifiers are given, (ii) using different
algorithms and starting parameters, (iii) using different feature subsets, and (iv) using different training sets.
3. Extracting eigenclassifiers for aggregate decisions

3.1. Constructing new uncorrelated eigenclassifiers

Given a set of positively correlated base classifiers, the usual approach is to keep a subset, pruning those that are corre-
lated with those in the subset. However, unless there is perfect correlation (of 1.0), this causes a loss of information as those
base classifiers which can potentially help in new cases are removed, decreasing fault tolerance. The approach we propose is
3 knn can be made unstable by condensing [2] or random feature selection [5].

1nn3nn5nnml1 ml2 ml3 ml4ml5 lnp mdtc45 svl sv2 svr
0

0.2

0.4

0.6

0.8

1

Algorithm

C
or
re
la
tio
ns

Fig. 2. The boxplot of correlations between random input feature subsets of the fourteen algorithms averaged over test sets of all data sets.

1nn3nn5nnml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr

0

0.2

0.4

0.6

0.8

1

C
or
re
la
tio
ns

Algorithm

Fig. 1. The boxplot of correlations between folds of the fourteen algorithms averaged over test sets of all data sets.

A. Ulas� et al. / Information Sciences 187 (2012) 109–120 113
to keep all the base classifiers even if there is correlation between them (as opposed to selecting a subset [42]) but combine
their predictions taking into account the fact that they are not independent.

We consider the outputs of base classifiers as dimensions of a new feature space in which a new classification problem is
defined, and we view the problem of combining base classifier outputs as the problem of choosing input features. With this
view in mind, when we are interested in extracting the best features (that is, choose the most informative base classifier
values), one way is to do feature selection, where we keep some of the features and discard the rest. Actually, methods where
people choose a subset of base classifiers from a large ensemble of candidates [27,34,9,35,11,49,42] do exactly this.

In this paper, we advocate the other approach of combining the base classifier outputs to define new eigenclassifiers. This
is similar to feature extraction in pattern recognition where we define new features that are combinations of the original fea-
tures. In particular, we use PCA which defines new aggregate dimensions which we can name eigenclassifiers, that are linear
combinations of the original features, which in our case correspond to outputs of the base classifiers.

We use PCA as follows: Given the 14 classifiers trained on the training fold trai, we calculate their outputs for the true class
as a 14-dimensional vector on val-Ai and their correlation matrix, which is a 14 � 14 matrix. The leading M eigenvectors of
this matrix are the new eigenclassifier directions. We map the original input to this space by first calculating classifier out-
puts and then multiplying all the K class outputs of a classifier by the corresponding value of these eigenvectors. The output
is then used to train a linear classifier in this new space, using again val-Ai. The input to the linear combiner (which is a linear
perceptron in our case) has M � K dimensions where we decide on M, the number of eigenvectors (components, eigenclassi-
fiers), based on the average accuracy on val-Bi, the other half of the validation fold (unused during training of the base clas-
sifiers or the linear combiner). We report and check for significant difference on the accuracies of the ten folds on the test.

One advantage of a linear combiner is that there is no need for scaling or any other normalization [25,18]. When there are
a number of groups with different intragroup and intergroup correlations, a trained linear combiner works better than any
fixed rule in decreasing error [41]. The superiority of the linear perceptron over other (linear) combiners has been shown by
Raudys [32].

114 A. Ulas� et al. / Information Sciences 187 (2012) 109–120
The eigenvectors of the correlation matrix can also be analyzed for information extraction. In Fig. 3, we show the first five
eigenvectors of the correlation matrix averaged over all data sets (Table 1) (these are not the eigenvectors used; actually, for
each data set, in each fold, there is a different correlation matrix and a different set of eigenvectors). The numbers in the top
right corner of the figure is the proportion of variance explained by the components up until then.

In all data sets, we always see that the first eigenvector is a vector of roughly equal positive values; doing a dot product
with it is almost like a simple averaging. It is known [33] that if we have a covariance matrix where all variances are equal
and all correlations are also of similar magnitude, the first principal component is proportional to the mean of the input vari-
ables. In our case, the proportion of variance explained by the first eigenvector is 0.62 on the average, and this value is higher
as the base classifiers become more correlated. We interpret this as follows: Even when the classifiers are correlated, the best
aggregate decision is to have a simple average and this gives us more than half of the information provided by the classifiers,
as measured by the proportion of variance explained. A similar conclusion has also been reached by Fumera and Roli [14],
where they say that ‘‘simple averaging is the optimal linear combining rule only if the individual classifiers exhibit identical
error rates and identical correlations between estimation errors.’’ This also implies that in cases when this is not true, taking
only an average corresponds to discarding the variance carrying dimensions that the other components represent.

We can extract more information by looking at the eigenvectors that follow (see Fig. 3): In the second one, we have all knn
variants with positive weights, perceptrons with negative weights, and all others are close to 0; we interpret this as the near-
est neighbor dimension. In the third, svms and the two trees (c45 and mdt) have positive weights, perceptrons have negative
weights and the others have small negative weights; this is the svm-tree dimension. The fourth separates trees from svms.
Once we make a distinction between the major groups (and having explained 81% of the variance), the fifth separates lnp
from other perceptrons, and univariate and multivariate trees.

We compare our results using PCA with four other methods:

� BEST is the accuracy of the most accurate single base classifier.
� ALL is the accuracy when all fourteen base classifiers are combined.
� OPT is the accuracy of the optimum subset, that is, the one found by exhaustive search over all 214 possible subsets.
� ACC is the accuracy of the subset constructed by the ICON [42] variant which uses accuracy as the model selection criteria

and forward search as the search direction. The algorithm starts with the most accurate classifier on val-B, and adds clas-
sifiers to the ensemble one by one, until all classifiers are used, or average val-B accuracy does not increase. The algorithm
starts with E0 ;, then at each step t, all the base classifiers Mj R E(t�1) are combined with E(t�1) to form St

j . We select St
j�

which is the ensemble with the highest accuracy. If accuracy of St
j� is higher than E(t�1), we set Et St

j� and continue, else
the algorithm stops and returns E(t�1). This implements the forward search; backward search starts with all the base clas-
sifiers and prunes classifiers until accuracy decreases.

Note that as with PCA, there are linear perceptrons trained to combine the outputs of the base classifiers also with BEST, OPT,
ACC, and ALL, and they are also trained on val-A folds.

3.2. Case study: pageblock data set

Before proceeding to our complete results on all 38 data sets, we start by presenting our results on one data set, pageblock,
in more detail, to get an initial feel.
−0.5
0

0.5 0.62

−0.5
0

0.5 0.72

−0.5
0

0.5 0.77

−0.5
0

0.5 0.81

1nn 3nn 5nn ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr
−0.5
0

0.5 0.84

Fig. 3. The first five eigenvectors of the correlation matrix of all fourteen classifiers averaged over all data sets, shown in Table 1. The gray boxes show
positive dimensions, and the white boxes show negative dimensions. The numbers on the top-right of each subfigure represents the proportion of variance
explained up to and including that eigenvector.

A. Ulas� et al. / Information Sciences 187 (2012) 109–120 115
The correlation matrix is given in Table 2 and the first five eigenvectors of the correlation matrix is given in Fig. 4. This is a
data set where the base classifiers are strongly correlated and the first component explains 79% of the variance. The second
separates knn variants from all others and the third separates c45 from mlp variants. The fourth one makes a distinction be-
tween single-layer and multilayer perceptrons and svm with polynomial and Gaussian kernels. The fifth one separates uni-
variate and multivariate trees.

We see the error of the PCA method compared to those of BEST, OPT, ACC, and ALL in Fig. 5, where we see that accuracy in-
creases by including more components. On this data set, PCA, OPT, ACC, and ALL are significantly more accurate than BEST. PCA

with four eigenclassifiers is as accurate as ALL. Note that OPT is not the most accurate, because the optimum is chosen accord-
ing to val-B error, but Fig. 5 shows the errors on test. On this data set where the first component explains 79% of the variance,
average rule is as accurate as the trained linear rule.

3.3. Overall results

Comparing our PCA method with BEST, ALL, ACC, and OPT on all 38 data sets, we get the pairwise results in Table 3. There is no
significant difference between PCA, ALL, ACC, and OPT but all four are significantly more accurate than BEST. ALL is not more accu-
rate than PCA, or the other way around. Friedman’s test rejects that the five methods have equal ranks. Doing Nemenyi’s post
hoc test, we get the results in Fig. 6. The test finds that PCA, OPT, ACC, and ALL belong to one group, and this group is signif-
icantly more accurate than BEST. We see that PCA and ALL have the same accuracy, where generally a few components are en-
ough with PCA; see Fig. 7 for the histogram of number of components used by PCA on 38 data sets. Using the top few
eigenvectors of PCA, instead of all, has a smoothing effect, because it gets rid of noisy attributes.

It can be said that the major advantage of a subset selection method over PCA is that once a subset is chosen during train-
ing, afterwards during test, not all, but only those in the subset need be evaluated, whereas PCA needs to calculate all base
classifier outputs before doing the dot product and calculate the eigenclassifier outputs. However the disadvantage of subset
selection is that once a number of classifiers are pruned, their potentially useful contribution is also removed; PCA keeps the
Table 2
Average correlations on the pageblock data set.

kn1 kn3 kn5 ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr

kn1 1.00 0.80 0.74 0.59 0.57 0.57 0.57 0.59 0.55 0.53 0.50 0.56 0.52 0.59
kn3 0.80 1.00 0.95 0.76 0.74 0.75 0.74 0.77 0.71 0.69 0.61 0.73 0.68 0.77
kn5 0.74 0.95 1.00 0.81 0.79 0.79 0.78 0.81 0.74 0.74 0.65 0.77 0.73 0.83
ml1 0.59 0.76 0.81 1.00 0.93 0.94 0.92 0.92 0.82 0.79 0.68 0.89 0.78 0.86
ml2 0.57 0.74 0.79 0.93 1.00 0.95 0.93 0.91 0.79 0.81 0.70 0.89 0.78 0.85
ml3 0.57 0.75 0.79 0.94 0.95 1.00 0.94 0.93 0.81 0.79 0.69 0.88 0.76 0.86
ml4 0.57 0.74 0.78 0.92 0.93 0.94 1.00 0.92 0.82 0.79 0.67 0.88 0.77 0.85
ml5 0.59 0.77 0.81 0.92 0.91 0.93 0.92 1.00 0.84 0.80 0.67 0.88 0.77 0.87
lnp 0.55 0.71 0.74 0.82 0.79 0.81 0.82 0.84 1.00 0.73 0.59 0.85 0.76 0.80
mdt 0.53 0.69 0.74 0.79 0.81 0.79 0.79 0.80 0.73 1.00 0.60 0.81 0.78 0.83
c45 0.50 0.61 0.65 0.68 0.70 0.69 0.67 0.67 0.59 0.60 1.00 0.68 0.63 0.66
svl 0.56 0.73 0.77 0.89 0.89 0.88 0.88 0.88 0.85 0.81 0.68 1.00 0.90 0.88
sv2 0.52 0.68 0.73 0.78 0.78 0.76 0.77 0.77 0.76 0.78 0.63 0.90 1.00 0.82
svr 0.59 0.77 0.83 0.86 0.85 0.86 0.85 0.87 0.80 0.83 0.66 0.88 0.82 1.00

−1
−0.5
0

0.5 0.79

−1
−0.5
0

0.5 0.85

−1
−0.5
0

0.5 0.88

−1
−0.5
0

0.5 0.91

1nn 3nn 5nn ml1 ml2 ml3 ml4 ml5 lnp mdt c45 svl sv2 svr
−1

−0.5
0

0.5 0.93

Fig. 4. First five eigenvectors of the correlation matrix on the pageblock data set.

Table 3
Pairwise comparisons of BEST, PCA, OPT, ACC, and ALL.

BEST PCA ALL OPT ACC

BEST 0 1 1 1 1
PCA 8 0 0 0 3
ALL 8 0 0 0 2
OPT 13 4 2 0 2
ACC 16 4 2 1 0

2.5
CD

PCA

BEST

3.03.5

ALL

4.5 4.0

OPT

2.0

ACC

Fig. 6. Graphical representation of post hoc Nemenyi test, as proposed in [12]. The numbers on the line represent the average ranks, CD is the critical
difference for statistical significance, and bold lines connect the methods which have no significant difference.

0 5 10 15

0.04

0.05

0.06

0.07

pageblock

1nn

3nn
5nn

ml1
ml2ml3

ml4

ml5 c45

sv1

sv2

svr

BEST

PCA

ALLOPT

ACC

L

lnp mdt

Single
BEST
PCA
ALL
OPT
ACC

Fig. 5. Classification errors of base classifiers, PCA, OPT, ACC, and ALL on pageblock.

1 2 3 4 5 6 7 8 9 1011121314
0

2

4

6

8

10
PCA

L

co
m
po
ne
nt
s

Fig. 7. Histogram of the number of components used by PCA on all 38 data sets.

116 A. Ulas� et al. / Information Sciences 187 (2012) 109–120

A. Ulas� et al. / Information Sciences 187 (2012) 109–120 117
whole classifiers and hence is more fault tolerant. Note that if the aim is feature selection, there are methods which use PCA
for this purpose [19]: We can decrease the ensemble size before doing PCA; for example, given that c45 and mdt are both in
the tree dimension, or, members of the tree ‘‘family,’’ we can get rid of one, increasing the weight of the other.

3.4. Comparison with AdaBoost and bagging

We compare our proposed algorithms with AdaBoost [13] and Bagging [7]:

� ADA: Standard AdaBoost implemented as proposed in [13]. We make a slight change and instead of stopping at 100%
accuracy, we reset the instance weights and continue to get more diversity. We train decision tree ensembles of size
5, 10, 15, 20, 25, 30 and choose the one with the best val-B accuracy.
� BAG: The original Bagging algorithm proposed in [7]. We train decision tree ensembles of size 5, 10, 15, 20, 25, 30 and

choose the one with the best val-B accuracy.

We compare accuracies of these methods in a pairwise manner on test in Table 4. These are the number of significant wins
and losses of method in the row over the method in the column. The sum of wins and losses subtracted from 38 gives the
number of ties. If the entry is bold, this means that the number of wins/losses over 38 is statistically significant using the sign
test. We see that PCA is significantly more accurate than both ADA and BAG, and ADA are significantly more accurate than BAG. If
we use a nonparametric test on the average ranks of the four ensemble methods on 38 data sets (Table 5), we see that Fried-
man’s test rejects the hypothesis that the four methods have equal ranks. Doing Nemenyi’s post hoc test for pairwise com-
parison, we get the results in Fig. 8. We see that we get similar results as the sign test, this time, the three methods PCA, ACC

and ADA have comparable accuracy and are significantly more accurate than BAG.
In Table 6, we can see the average and standard deviation of number of classifiers used by the compared ensemble meth-

ods. We can see that, though PCA and ADA have comparable accuracies when we use the nonparametric tests, PCA uses fewer
classifiers. This is because ADA uses the same base classifier, and to create diversity needs more classifiers, whereas PCA uses
different base classifiers and profits from their diversity.
Table 4
Pairwise comparison of accuracies (wins/losses over 38) of ensemble methods using 5 � 2 cv F-test.

PCA ACC ADA BAG

PCA 0 3 10 11
ACC 4 0 9 11
ADA 1 2 0 10
BAG 0 0 0 0

Table 5
Average ranks of ensemble methods.

PCA ACC ADA BAG

1.92 1.76 2.45 3.89

4 2
CD

BAG

ACC

ADA
PCA

3 1

Fig. 8. Graphical representation of post hoc Nemenyi test results of compared methods with ranks given in Table 5.

Table 6
Average and standard deviation of number of base classifiers used by different ensemble methods.

PCA ACC ADA BAG

5.68 ± 3.25 3.95 ± 2.62 22.10 ± 8.11 10.13 ± 8.01

118 A. Ulas� et al. / Information Sciences 187 (2012) 109–120
3.5. Related work

3.5.1. Selecting a subset of classifiers
Instead of using all, choosing a subset may lead to higher accuracy and decreased complexity where the idea is to weed

out the inaccurate or redundant (having low diversity) classifiers [54,9,35,42]. If the number of base classifiers is not high, a
subset can be found by exhaustive search [36]. Otherwise heuristic methods are preferred: forward search [9,11,35,49,42],
backward search [30,27], genetic algorithms [30,54,35], or optimization algorithms [37,53]. Greedy heuristic algorithms,
such as forward and backward search using accuracy as the model selection criteria, are known to find ensembles having
accuracies as high as the optimal subset constructed by exhaustive search [35,42]. Forward subset selection has been shown
to outperform classical combination schemes such as Bagging and boosting [9].

Several studies to compare subset selection algorithms were conducted which use various search strategies, classification
algorithms, model selection criteria and data sets [9,35,49,42]. It has been shown that using diversity alone is not a good
indicator of ensemble accuracy, one should use accuracy or some combination of accuracy and diversity, as the model selec-
tion criterion [35,42]. Of the search strategies, forward and backward searches find ensembles which have the same accu-
racy, but forward search is faster, finds simpler ensembles because backward search may stop early especially when the
number of base classifiers is high [35,42]. Floating search does not add to the accuracy of forward search, because most
of the time the chosen subsets have a small number of base classifiers, and pruning a previously added classifier is not nec-
essary [42], thus, forward search should be preferred as the search strategy. The chosen subset can be combined using voting
or a trained combiner. The trained combiner may be needed if some of the base classifiers are inaccurate and need to be
given smaller weights. Most of the time a trained combiner is not necessary when subset selection is used [42]. Moreover,
one needs to have separate data to train the combiner, and this may cause overfitting if the number of classes and number of
base classifiers is high.
3.5.2. Algorithms decorrelating base classifier outputs
All methods which consider the outputs of previously trained base learners as inputs to a new learner are variants of

stacking [46,38] and so are the methods we discuss above. A subset selection algorithm has the potential to remove classi-
fiers that may contribute to accuracy, but our post-processing approach considers all the classifiers. Merz [28,29] discuss
work that are most similar to ours. Merz [28] proposes the SCANN algorithm that uses correspondence analysis on the crisp
outputs of base classifiers and combines them using the nearest mean classifier. This corresponds to doing PCA on the 0/1
outputs of the base classifiers and one can show that the nearest mean classifier is also a linear classifier. In his work, Merz
uses neural networks, rule lists, decision trees and nearest neighbor classifiers as base classifiers. The combination results are
compared with voting, and using naive Bayes and multilayer perceptron as stackers. In theory, numeric outputs give more
information and are preferred [38], but in our experiments, we have found no difference between using 0/1 or continuous
outputs; this probably is because our outputs are posterior probabilities (normalized using softmax) and are close to 0/1 any-
way. Note however that because we use a trained linear combiner and not a fixed rule (e.g., sum, max, etc.), there is no need
that the base classifier outputs be normalized. Note also that Merz works on the full 14 � K dimensions instead of 14.

Merz and Pazzani [29] propose the PCR⁄ algorithm which uses PCA on the outputs of base regressors. They show that the
algorithm is able to cope with the inherent correlations amongst the base regressors, which is what we try to achieve. They
compare their proposed method with other regression combination algorithms in the literature. After the reduction of the
output dimensionality using PCA, they also use a linear combiner for the final decision. Since theirs is a regression problem,
there is only one output in their study. As future work, they write that their algorithm can be used in classification problems
using a separate model for each class. The method we propose pools all class information and learns a single set of eigen-
classifiers; we believe that this is better than learning a separate set of eigenclassifiers for each class because it is a simpler
solution, has less parameters, pools data, and therefore has less risk of overfitting.
4. Discussion and conclusions

This paper has two parts where the first part investigates the source of correlation between learners and the second part
proposes a method to remove the possibly harmful effect of such correlation.

We test the effect of four factors on the correlation between classifiers, namely, similarity in the algorithms, hyperparam-
eters, overlapping folds, and shared input features, and see that no matter how we may vary algorithms, hyperparameters,
folds, or inputs, we still get positively correlated classifiers, and postprocessing is needed to make them uncorrelated. This
correlation analysis allows us to see how ensembles should be formed so that combination is useful. For example, we see
that bagging trees is a good idea but bagging support vector machines is not good; with the latter, it is better to play with
the kernel or inputs. With knn, neither resampling nor varying k suffices to get uncorrelated versions, one should vary some
other factor, for example, input features, or one should combine knn with some other algorithm, a linear perceptron for
example. We also see that it is better to combine different algorithms [42] or different inputs [1,11], rather than different
training subsets or hyperparameters. In case we have many classifiers from different families, we should prefer to use clas-
sifiers from different families because the correlation between families is less than the correlation between variants of the
same family. When learners are positively correlated, they cannot be used as they are because that will increase error. We

A. Ulas� et al. / Information Sciences 187 (2012) 109–120 119
propose to construct new uncorrelated eigenclassifiers from a set of correlated classifiers and our experimental results show
that our PCA-based method is as accurate as using the whole ensemble or the optimum subset. We define eigenclassifiers,
that is, linear combinations of existing base classifiers which are uncorrelated.

Using a feature extraction method such as PCA instead of a feature selection method such as subset selection may be cost-
lier, but a subset keeps some and discards the rest and has the potential to remove information that may be useful on some
instances; keeping and combining all allows redundancy and promises to be fault tolerant. For example, pattern recognition
is getting increasingly popular in adversarial environments (i.e. intrusion detection, spam filtering, etc.) where there is a
party who intentionally tries to fool the system [6]. We believe that our method will be useful for such applications because
it combines all sources of information while also taking their correlation into account.

Compared with the most commonly used two ensemble algorithms, i.e. AdaBoost and Bagging, we have seen that the
PCA-based method we propose is either more accurate, or has comparable accuracy but uses fewer number of classifiers.
We have also tried using linear discriminant analysis (LDA) instead of PCA; LDA is sometimes advantageous in that it uses
class information but in our case, it does not work as well as PCA because (i) the number of components should be less than
K, the number of classes, which makes the approach based on LDA unsuccessful in cases where K is small [41] or (ii) LDA
assumes that instances of a class form a single cluster which may not always be the case. One can also use nonlinear dimen-
sionality reduction methods, though in such a case we might lose interpretability of the new metaclassifiers. It is also pos-
sible to combine multiple representations of the same input by training experts on different representations of the same
object [1]. The analysis we do in this work can also be carried out for this case, that is, to check how much correlation there
is and how experts using different representations can be fused using PCA [41].
Acknowledgment

We would like to thank Mehmet Gönen for discussions. This work has been supported by the Turkish Academy of Sci-
ences in the framework of the Young Scientist Award Program (EA-TÜBA-GEB_IP/2001-1-1), Boğaziçi University Scientific Re-
search Project 05HA101 and Turkish Scientific Technical Research Council TÜB_ITAK EEEAG 104E079.
References

[1] F. Alimoğlu, E. Alpaydın, Combining multiple representations and classifiers for pen-based handwritten digit recognition, in: Proceedings of the
International Conference on Document Analysis and Recognition, ICDAR’97, 1997.

[2] E. Alpaydın, Voting over multiple condensed nearest neighbors, Artificial Intelligence Review 11 (1–5) (1997) 115–132.
[3] E. Alpaydın, Combined 5 � 2 cv F test for comparing supervised classification learning algorithms, Neural Computation 11 (8) (1999) 1885–1892.
[4] A. Asuncion, D.J. Newman, UCI machine learning repository, <http://www.ics.uci.edu/�mlearn/MLRepository.html>, 2007.
[5] S.D. Bay, Combining nearest neighbor classifiers through multiple feature subsets, in: Proceedings of the International Conference on Machine

Learning, ICML’98, 1998.
[6] B. Biggio, G. Fumera, F. Roli, Multiple classifier systems for robust classifier design in adversarial environments, International Journal of Machine

Learning and Cybernetics 1 (2010) 27–41.
[7] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.
[8] G. Brown, J. Wyatt, R. Harris, X. Yao, Diversity creation methods: a survey and categorisation, Information Fusion 6 (1) (2005) 5–20.
[9] R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection from libraries of models, in: Proceedings of the International Conference on

Machine Learning, ICML’04, 2004.
[10] C.C. Chang C.J. Lin LIBSVM: a library for support vector machines, <http://www.csie.ntu.edu.tw/�cjlin/libsvm>, 2001.
[11] C. Demir, E. Alpaydın, Cost-conscious classifier ensembles, Pattern Recognition Letters 26 (14) (2005) 2206–2214.
[12] J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research 7 (2006) 1–30.
[13] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Proceedings of the International Conference on Machine Learning, ICML’96,

1996.
[14] G. Fumera, F. Roli, A theoretical and experimental analysis of linear combiners for multiple classifier systems, IEEE Transactions on Pattern Analysis

Machine Intelligence 27 (6) (2005) 942–956.
[15] S. Garcı́a, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational

intelligence and data mining: experimental analysis of power, Information Sciences 180 (10) (2010) 2044–2064.
[16] T.K. Ho, The random subspace method for constructing decision forests, IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (8) (1998)

832–844.
[17] R.A. Jacobs, Bias/variance analysis of mixtures-of-experts architectures, Neural Computation 9 (2) (1997) 369–383.
[18] A. Jain, K. Nandakumar, A. Ross, Score normalization in multimodal biometric systems, Pattern Recognition 38 (2005) 2270–2285.
[19] I.T. Jolliffe, Discarding variables in a principal component analysis. II: Real data, Applied Statistics 22 (1) (1973) 21–31.
[20] L.I. Kuncheva, Combining classifiers: soft computing solutions, in: S.K. Pal (Ed.), Pattern Recognition: From Classical to Modern Approaches, World

Scientific, 2001.
[21] L.I. Kuncheva, Combining pattern classifiers: methods and algorithms, Wiley-Interscience, 2004.
[22] L.I. Kuncheva, Special issue on diversity in multiple classifier systems, Information Fusion 6 (1) (2005) 1–115.
[23] L.I. Kuncheva, C.J. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning 51 (2)

(2003) 181–207.
[24] L.I. Kuncheva, C.J. Whitaker, C.A. Ship, R.P. Duin, Is independence good for combining classifiers? in: Proceedings of the 15th International Conference

on Pattern Recognition, ICPR’00, 2000.
[25] C.-L. Liu, Classifier combination based on confidence transformation, Pattern Recognition 38 (2005) 11–28.
[26] R. Mallipeddi, S. Mallipeddi, P. Suganthan, Ensemble strategies with adaptive evolutionary programming, Information Sciences 180 (9) (2010) 1571–

1581.
[27] D.D. Margineantu, T.G. Dietterich, Pruning adaptive boosting, in: Proceedings of the International Conference on Machine Learning, ICML’97, 1997.
[28] C.J. Merz, Using correspondence analysis to combine classifiers, Machine Learning 36 (1–2) (1999) 33–58.
[29] C.J. Merz, M.J. Pazzani, A principal components approach to combining regression estimates, Machine Learning 36 (1–2) (1999) 9–32.
[30] D. Partridge, W.B. Yates, Engineering multiversion neural-net systems, Neural Computation 8 (4) (1996) 869–893.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

120 A. Ulas� et al. / Information Sciences 187 (2012) 109–120
[31] C.E. Rasmussen, R.M. Neal, G. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra, R. Tibshirani, Delve data for evaluating learning in valid
experiments, <http://www.cs.toronto.edu/�delve/>, 1995–1996.

[32] S. Raudys, Trainable fusion rules. I: large sample size case, Neural Networks 19 (2006) 1506–1516.
[33] A.C. Rencher, Interpretation of canonical discriminant functions, canonical variates, and principal components, The American Statistician 46 (3) (1992)

217–225.
[34] F. Roli, G. Giacinto, G. Vernazza, Methods for designing multiple classifier systems, in: Proceedings of the International Workshop on Multiple Classifier

Systems, MCS’01, 2001.
[35] D. Ruta, B. Gabrys, Classifier selection for majority voting, Information Fusion 6 (1) (2005) 63–81.
[36] A.J.C. Sharkey, N.E. Sharkey, U. Gerecke, G.O. Chandroth, The ‘‘test and select’’ approach to ensemble combination, in: Proceedings of the International

Workshop on Multiple Classifier Systems, MCS’00, vol. 1857, 2000.
[37] C. Tamon, J. Xiang, On the boosting pruning problem, in: Proceedings of the European Conference on Machine Learning, ECML’00, 2000.
[38] K.M. Ting, I.H. Witten, Issues in stacked generalization, Journal of Artificial Intelligence Research 10 (1999) 271–289.
[39] D.L. Tong, R. Mintram, Genetic algorithm-neural network (gann): a study of neural network activation functions and depth of genetic algorithm search

applied to feature selection, International Journal of Machine Learning and Cybernetics 1 (2010) 75–87.
[40] K. Tumer, J. Ghosh, Error correlation and error reduction in ensemble classifiers, Connection Science 8 (3) (1996) 385–404.
[41] A. Ulas�, Incremental construction of cost-conscious ensembles using multiple learners and representations in machine learning, Ph.D. thesis, Boğaziçi

University. <http://www.cmpe.boun.edu.tr/�ulas/phdthesis.pdf>, 2009.
[42] A. Ulas�, M. Semerci, O.T. Yıldız, E. Alpaydın, Incremental construction of classifier and discriminant ensembles, Information Sciences 179 (9) (2009)

1298–1318.
[43] L.J. Wang, An improved multiple fuzzy nnc system based on mutual information and fuzzy integral, International Journal of Machine Learning and

Cybernetics 2 (2011) 25–36.
[44] X.-Z. Wang, C.-R. Dong, Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy, IEEE Transactions on Fuzzy Systems 17 (2009)

556–567.
[45] X.-Z. Wang, J.-H. Zhai, S.-X. Lu, Induction of multiple fuzzy decision trees based on rough set technique, Information Sciences 178 (2008) 3188–3202.
[46] D.H. Wolpert, Stacked generalization, Neural Networks 5 (1992) 241–259.
[47] R. Xia, C. Zong, S. Li, Ensemble of feature sets and classification algorithms for sentiment classification, Information Sciences 181 (6) (2011) 1138–1152.
[48] J. Xiao, C. He, X. Jiang, D. Liu, A dynamic classifier ensemble selection approach for noise data, Information Sciences 180 (18) (2010) 3402–3421.
[49] Y. Yang, G.I. Webb, J. Cerquides, K.B. Korb, J. Boughton, K.M. Ting, To select or to weigh: a comparative study of linear combination schemes for

superparent-one-dependence estimators, IEEE Transactions on Knowledge and Data Engineering 19 (12) (2007) 1652–1665.
[50] O.T. Yıldız, E. Alpaydın, Linear discriminant trees, in: Proceedings of the International Conference on Machine Learning, ICML’00, 2000.
[51] O.T. Yıldız, A. Ulas�, M. Semerci, E. Alpaydın, AYSU: machine learning data sets for model combination, <http://www.cmpe.boun.edu.tr/�ulas/aysu>,

2007.
[52] E. Yu, P. Suganthan, Ensemble of niching algorithms, Information Sciences 180 (15) (2010) 2815–2833.
[53] Y. Zhang, S. Burer, W.N. Street, Ensemble pruning via semi-definite programming, Journal of Machine Learning Research 7 (2006) 1315–1338.
[54] Z.-H. Zhou, J. Wu, W. Tang, Ensembling neural networks: many could be better than all, Artificial Intelligence 137 (2002) 239–263.

http://www.cs.toronto.edu/~delve/
http://www.cs.toronto.edu/~delve/
http://www.cmpe.boun.edu.tr/~ulas/phdthesis.pdf
http://www.cmpe.boun.edu.tr/~ulas/phdthesis.pdf
http://www.cmpe.boun.edu.tr/~ulas/aysu
http://www.cmpe.boun.edu.tr/~ulas/aysu

	Eigenclassifiers for combining correlated classifiers
	1 Introduction
	2 Correlation analysis on real data sets
	2.1 Algorithms and data sets
	2.2 Estimating the correlations of classifiers
	2.2.1 Correlations due to hyperparameters
	2.2.2 Correlations due to algorithms
	2.2.3 Correlations due to sampling
	2.2.4 Correlations due to shared input features

	2.3 Related work

	3 Extracting eigenclassifiers for aggregate decisions
	3.1 Constructing new uncorrelated eigenclassifiers
	3.2 Case study: pageblock data set
	3.3 Overall results
	3.4 Comparison with AdaBoost and bagging
	3.5 Related work
	3.5.1 Selecting a subset of classifiers
	3.5.2 Algorithms decorrelating base classifier outputs

	4 Discussion and conclusions
	Acknowledgment
	References

