# Calculating the VC-Dimension of Decision Trees

Özlem Aslan<sup>1</sup> Olcay Taner Yıldız<sup>2</sup> Ethem Alpaydın<sup>1</sup>

<sup>1</sup>Department of Computer Engineering Boğaziçi University

<sup>2</sup>Department of Computer Engineering Işık University

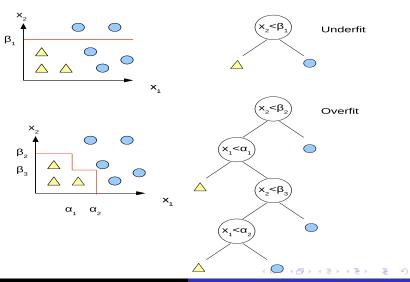
24th International Symposium on Computer and Information Sciences, 2009



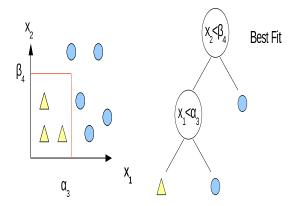
- Introduction
  - Model Complexity
  - VC Dimension
- Proposed Method
  - Exhaustive Search Algorithm
  - Estimating VC-Dimension By Regression
  - Complexity Control Using VC-Dimension Estimates
- 3 Conclusion



- Introduction
  - Model Complexity
  - VC Dimension
- 2 Proposed Method
  - Exhaustive Search Algorithm
  - Estimating VC-Dimension By Regression
  - Complexity Control Using VC-Dimension Estimates
- 3 Conclusion




- Introduction
  - Model Complexity
  - VC Dimension
- 2 Proposed Method
  - Exhaustive Search Algorithm
  - Estimating VC-Dimension By Regression
  - Complexity Control Using VC-Dimension Estimates
- 3 Conclusion




- Introduction
  - Model Complexity
  - VC Dimension
- Proposed Method
  - Exhaustive Search Algorithm
  - Estimating VC-Dimension By Regression
  - Complexity Control Using VC-Dimension Estimates
- 3 Conclusion

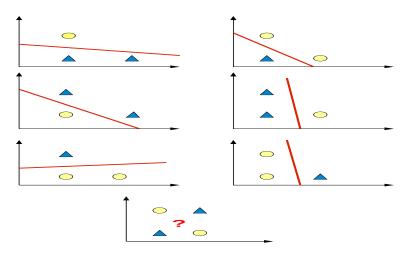
### **Underfit vs Overfit**



## **Best Model**



### Structural Risk Minimization

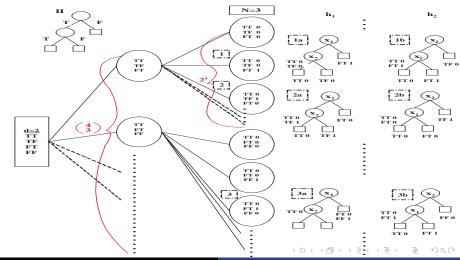

$$E_g = E_t + \frac{\epsilon}{2} \left( 1 + \sqrt{1 + \frac{4E_t}{\epsilon}} \right) \tag{1}$$

$$\epsilon = a_1 \frac{V[\log(a_2 N/V) + 1] - \log(\nu)}{N} \tag{2}$$

(Vapnik95)

| Variable        | Definition                   |
|-----------------|------------------------------|
| $E_t$           | training error               |
| V               | VC dimension of the model    |
| $\nu$           | confidence level             |
| $a_1$ and $a_2$ | empirically fitted constants |
| Ν               | sample size                  |

## **VC Dimension**



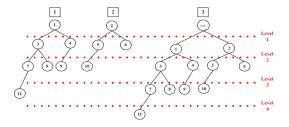

- Introduction
  - Model Complexity
  - VC Dimension
- 2 Proposed Method
  - Exhaustive Search Algorithm
  - Estimating VC-Dimension By Regression
  - Complexity Control Using VC-Dimension Estimates
- 3 Conclusion

### Procedure

- An exhaustive search algorithm to calculate the exact VC-dimensions.
- Fit a regressor so that we can estimate the VC-dimension of any tree.
- VC-dimension estimates in pruning to validate that they are indeed good estimates.

### Illustration




# **Computational Complexity**

$$\sum_{N=1}^{V} {2^{d} \choose N} 2^{N} |H|$$

- The full tree with depth 4 and for 4 input features requires 2 days to complete on a quad-core computer
- Depth 5 and for 5 input features will require approximately 10<sup>13</sup> days.
- We can run the exhaustive search algorithm only on few H
  and on cases with small d and |H|.

## **Experimental Setup**

- We thoroughly searched decision trees with depth up to four.
- We use the fact that two isomorphic trees have the same VC dimension.



# Regression Model

154 training instances

$$V = 0.7152 + 0.6775 V_l + 0.6775 V_r - 0.6600 \log d + 1.2135 \log M$$

 $R^2$  is 0.9487.

# **Experimental Setup**

- CVprune
- SRMprune
- NOprune

## **Experimental Setup**

#### Functions:

$$F_1 = x_0x_1 + x_0x_2 + x_1x_2$$

$$F_2 = x_0x_1 + x_0x_2 + x_0x_3 + x_1x_2 + x_1x_3 + x_2x_3$$

$$F_3 = x_0x_1' + x_0'x_1$$

- The number of input features d = 8 and d = 12
- Five different noise levels  $\rho$  = 0.0, 0.01, 0.05, 0.1, and 0.2.
- Four different sample size percentage S = 10, 25, 50, 100.

$$d = 12$$
,  $\rho = 0.0$ , and  $S = 100$ 

| Function       | Error Rate    |               |               | Number of Nodes |                 |                   |
|----------------|---------------|---------------|---------------|-----------------|-----------------|-------------------|
|                | NOprune       | CVprune       | SRMprune      | NOprune         | CVprune         | SRMprune          |
| F <sub>1</sub> | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | $0.0 \pm 0.0$ | $5.0 \pm 0.0$   | $5.0 \pm 0.0$   | $5.0 \pm 0.0$     |
| $F_2$          | $0.0\pm0.0$   | $0.0\pm0.0$   | $0.0\!\pm0.0$ | $9.0\pm0.0$     | $9.0\pm0.0$     | $9.0\!\pm0.0$     |
| F <sub>3</sub> | $3.9\pm2.8$   | $8.5\!\pm7.0$ | $3.9\!\pm2.8$ | 177.6±115.8     | $83.3 \pm 59.5$ | $174.9 \pm 115.6$ |

$$\rho$$
 = 0.2, S = 100, and  $F = F_2$ 

| d  | Error Rate     |                |                  | Number of Nodes    |               |                |
|----|----------------|----------------|------------------|--------------------|---------------|----------------|
|    | NO prune       | CV prune       | SRM prune        | NO prune           | CV prune      | SRM prune      |
| 8  | $38.1 \pm 4.1$ | $37.8 \pm 5.3$ | $35.3 \!\pm 2.7$ | $57.5 \pm 6.3$     | $3.8\pm3.3$   | $12.8 \pm 7.9$ |
| 12 | 35.5± 1.2      | $28.2\!\pm3.0$ | $21.0\!\pm0.6$   | $869.2 \!\pm 15.1$ | $4.2\!\pm1.5$ | $9.0\!\pm0.0$  |

$$\rho$$
 = 0.2, S = 100, and  $F = F_2$ 

| d  | Error Rate     |                |                  | Number of Nodes    |               |                |
|----|----------------|----------------|------------------|--------------------|---------------|----------------|
|    | NO prune       | CV prune       | SRM prune        | NO prune           | CV prune      | SRM prune      |
| 8  | $38.1 \pm 4.1$ | $37.8 \pm 5.3$ | $35.3 \!\pm 2.7$ | $57.5 \pm 6.3$     | $3.8\pm3.3$   | $12.8 \pm 7.9$ |
| 12 | 35.5± 1.2      | $28.2\!\pm3.0$ | $21.0\!\pm0.6$   | $869.2 \!\pm 15.1$ | $4.2\!\pm1.5$ | $9.0\!\pm0.0$  |

$$d = 12$$
,  $S = 50$ , and  $F = F_1$ 

| ρ    | Error Rate     |                |                | Number of Nodes  |               |               |
|------|----------------|----------------|----------------|------------------|---------------|---------------|
|      | NO prune       | CV prune       | SRM prune      | NO prune         | CV prune      | SRM prune     |
| 0.0  | $0.0\pm0.0$    | $0.0\pm0.0$    | $0.0\pm0.0$    | $5.0 \pm 0.0$    | $5.0 \pm 0.0$ | $5.0\pm0.0$   |
| 0.01 | $3.6 \pm 0.5$  | $1.5\!\pm0.3$  | $1.5 \pm 0.3$  | $62.5 \pm 11.0$  | $5.0\!\pm0.0$ | $5.0\!\pm0.0$ |
| 0.05 | $12.2\pm0.8$   | $5.0\!\pm0.5$  | $5.0\!\pm0.5$  | $167.0 \pm 10.6$ | $5.0\!\pm0.0$ | $5.0\!\pm0.0$ |
| 0.1  | $21.7\pm0.9$   | $12.8\!\pm4.7$ | $10.6\!\pm0.2$ | $283.2 \pm 13.0$ | $5.2\pm2.2$   | $5.0\!\pm0.0$ |
| 0.2  | $35.7\!\pm1.4$ | $29.3\!\pm5.4$ | $20.6\!\pm0.9$ | $419.5\!\pm13.7$ | $2.6\!\pm1.6$ | $5.0\!\pm0.0$ |

$$d = 8$$
,  $\rho = 0.05$ , and  $F = F_3$ 

| S   | Error Rate      |                   |                 | Number of Nodes |                                   |                  |
|-----|-----------------|-------------------|-----------------|-----------------|-----------------------------------|------------------|
|     | NO prune        | CV prune          | SRM prune       | NO prune        | CV prune                          | SRM prune        |
| 100 | $19.0 \pm 5.9$  | $25.3 \pm 14.9$   | $15.8 \pm 8.6$  | $36.3 \pm 10.6$ | $8.4 \pm 5.1$                     | 23.8± 18.9       |
| 50  | $23.7 \pm 14.7$ | $28.9\!\pm17.2$   | $23.4\!\pm14.6$ | $19.4\pm9.1$    | $\textbf{4.4} \!\pm \textbf{3.3}$ | $18.1 \!\pm 9.7$ |
| 25  | 27.0± 11.7      | $37.4 \!\pm 15.7$ | $27.0 \pm 11.7$ | $9.4\pm4.1$     | $1.3\pm1.7$                       | $9.4\pm4.1$      |
| 10  | 41.7± 17.1      | $45.0\!\pm17.2$   | $41.7\!\pm17.1$ | $5.3\!\pm0.9$   | $0.9\!\pm1.4$                     | $5.3\!\pm0.9$    |

- Introduction
  - Model Complexity
  - VC Dimension
- 2 Proposed Method
  - Exhaustive Search Algorithm
  - Estimating VC-Dimension By Regressior
  - Complexity Control Using VC-Dimension Estimates
- 3 Conclusion



### Conclusion

- VC-dimension calculation by exhaustive search
- Estimation of VC-dimension via regression
- VC-dimension used in SRM based model selection
- Find trees that are as accurate as in CV pruning

#### **Future Work**

- The approach can easily by extended to univariate decision trees with discrete and/or continuous features.
- Extension to K-class

#### Extension

Discrete features with 3 values:

$$V = -3.0014 + 0.5838 V_1 + 0.5838 V_2 + 0.5838 V_3 + 2.5312 log d + 1.9064 log M$$

 $R^2$  is 0.91.

4 values:

$$V = -1.6294 + 0.5560 V_1 + 0.5560 V_2 + 0.5560 V_3 + 0.5560 V_4 + 3.9830 log d - 0.4073 log M$$

 $R^2$  is 0.861.



### Extension

Discrete features with 5 values:

$$V = 14.4549 + 0.3924 V_1 + 0.3924 V_2 + 0.3924 V_3 + 0.3924 V_4 + 0.3924 V_5 - 4.7687 \log d - 1.3857 \log M$$

 $R^2$  is 0.782.