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Statistical Comparison of Classifiers Using Area
Under the ROC Curve

Özlem Aslan, Olcay Taner Yıldız and Ethem Alpaydın

Abstract

Statistical tests in the literature mainly use error rate for comparison. Receiver Operating Characteristics (ROC) curves and/or
Area Under the ROC Curve (AUC) can also be used for comparing classifier performances under a spectrum of loss values.
A ROC curve and hence an AUC value is calculated from one training/test pair and to average over randomness in folds, we
propose to usek-fold cross-validation to generate a set of ROC curves and AUC values to which we can fit a distribution and
test hypotheses on. Experiment results on 15 datasets using5 different classification algorithms show that our proposed test using
AUC values is to be preferred over the usual pairedt test on misclassification errors because it can detect equivalences and
differences which the error test cannot.

I. I NTRODUCTION

Comparing the performances of classifiers is a critical problem in machine learning. In the literature, to compare the
generalization error of learning algorithms, statisticaltests have been proposed [1], [2]. In choosing between two learning
algorithms, one can use a pairwise test to compare their generalization error and select the one that has lower error. Typically,
cross-validation is used to generate a set of training, validation folds, and we compare the expected error on the validation
folds after training on the training folds. Examples of suchtests are parametric tests, such ask-fold pairedt test,5 × 2 cv t
test [1], 5 × 2 cv F test [3], nonparametric tests, such as the sign test and Friedman’s test, or range tests, such as Wilcoxon
signed rank test.

AUC has been related to theWilcoxonstatistic. Wilcoxon statistic has been defined as an estimate of ‘true’ area under the
ROC curve, area constructed from an infinite sample [4]. In signal detection, people have been using ROC curves to visualize
the trade-off between hit rate and false alarm rate [5]. Areaunder the ROC curve (AUC) is also used for comparing classifiers.
However, ROC and AUC use a single training and testing pair [6], [7], [8]. In this paper, we extend this idea and usek-fold
cross-validation to generatek ROC curves and hencek AUC values and then we fit a distribution to the set of AUC values
and test hypothesis on these distributions.

In Section II, performance metrics for comparing classifiers, ROC curves and AUC are discussed. In Section III, our AUC
based statistical test is explained. In Section IV, the experimental setup and results of the experiments are given. In Section
V, we give the related work on ROC curve and AUC. We conclude inSection VI.

II. STATISTICAL METHODS FORCOMPARING CLASSIFICATION ALGORITHMS

A. Performance Metrics for Classifiers

If we define class labels of the two-class classification problem as positive and negative, the confusion matrix that is shown
in Table I contains the following items:

• True positive (TP ): If both the class label and the predicted class are positive.
• False negative (FN ): If the class label is positive and the predicted class is negative.
• False positive (FP ): If the class label is negative and the predicted class is positive.
• True negative (TN ): If both the class label and the predicted class are negative.

Different metrics calculated from these values are used in the literature:

hit rate =
TP

TP + FN

false alarm rate =
FP

TN + FP

error =
FP + FN

TP + TN + FP + FN
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TABLE I
CONFUSION MATRIX

Predicted Class

True Class Positive Negative

Positive TP FN

Negative FP TN

T
P

R

FPR

Fig. 1. Example ROC Curve: different treshold points are marked on the upper ROC curve. Lower diagonal line is the ROC curve for random prediction.

B. ROC curves

ROC curves are being used in signal processing to plot the trade-off between hit rate and false alarm rates. They allow
visualization of performance for a set of conditions instead of just the misclassification error. Hit rate or true positive rate
(TPR) defines they axis and false alarm rate or false positive rate (FPR) definesthe x axis. A classifier is good if it has a
high hit rate and a low false alarm rate, that is, if the curve is closer to the upper left corner. The diagonal line indicates the
curve for random prediction (see Figure 1)

In a two-class problem, if the posterior probability of the positive class is greater than the posterior probability of the negative
class, the classifier predicts the class label of a test instance as positive, otherwise it predicts the class label as negative. This
is equivalent to checking if the posterior probability of the positive class is greater than thethreshold valueof θ = 0.5. For
a given test set, a ROC curve is constructed by plotting the hit rates ony axis and false alarm rates inx axis for different
threshold values. The ROC curve construction algorithm is given in [5].

Let us define the positive class as classC1 and the negative class asC2. Given the loss matrix in Table II, for a test instance
x, the risk of choosingC1 is:

R(C1|x) = λ11P (C1|x) + λ12P (C2|x)

= λP (C2|x)

and the risk of choosingC2 is:

R(C2|x) = P (C1|x)

Then we chooseC1 if

R(C1|x) < R(C2|x)

λP (C2|x) < P (C1|x)

that is, if

P (C1|x)

P (C2|x)
> λ

SinceP (C1|x) + P (C2|x) = 1, this gives

P (C1|x)

1 − P (C1|x)
> λ

P (C1|x) >
λ

1 + λ
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TABLE II
LOSS MATRIX

C1 C2

C1 0 λ

C2 1 0

We see that the threshold of 0.5 which we use to calculate misclassification error corresponds toλ = 1, that is, when a false
positive and a false negative has equal loss. We get a varietyof thresholds when we varyλ:

θ =
λ

1 + λ
λ = 0.5 → θ = 1/3

λ = 1 → θ = 1/2

λ = 2 → θ = 2/3

λ = 10 → θ = 10/11

That is, the threshold points on the ROC curve indicate theλ values in the risk calculation. This is the reason why using ROC
curve (or AUC value, as we will see shortly) is better than using misclassification error because error gives equal emphasis and
makes no distinction between false positives and false negatives and thus may not be the best measure for many applications;
ROC curve (and AUC) takes a set of possible loss proportions into account and hence average over that defines a more robust
measure.

If the ROC curve of the first classifier is always over the ROC curve of the second classifier, we can easily say that the
first classifier is better than the second classifier. But thiscase does not always happen. In some cases, the ROC curve of the
first classifier may be over the ROC curve of the second classifier in one part, whereas the second classifier’s curve is over the
ROC curve of the first one in some other part; this implies thatthe two classifiers are preferred under different loss conditions.
ROC is a curve; one may reduce the ROC curve to a single value using thearea under ROC curve(AUC). If a ROC curve is
closer to the upper left corner, the area gets closer to 1. Thearea under the ROC curve is estimated by summing tropezoidal
areas formed by successive points on the ROC curve. A classifier with a greater AUC is said to be better than a classifier with
a smaller AUC. AUC calculation algorithm is given in [5].

III. PROPOSEDTECHNIQUE

In general, a classifier is trained using a training set and the ROC curve is constructed and AUC is calculated only once
using a test set. To average over randomness in the training and testing split, one can use more than one training and testing
pair, which results in multiple ROC curves and AUC values. The main idea of this paper is to fit a distribution to these values
and test hypotheses on such distributions.

We usek-fold cross-validation to generatek training sets and traink classifiers whose ROC curves and AUC values we
calculate over a test set. At the end, for each classificationalgorithm we havek AUC values. To have apaired test, we use
the same training and test sets for all algorithms. Afterwards, the two classification algorithms can be compared by applying
the pairedt test with the null hypothesis that two classifiers have the same mean AUC values and the alternative hypothesis
that the two AUC means are different.

k-fold cross-validated pairedt test will be called asAUC testin the rest of the paper. In AUC test, there are K train-test
set pairs because of applyingk-fold cross-validation. Each classification algorithm is trained on training setTi and posterior
probabilities are calculated by testing on test setTei , i = 1, . . . , K. Using these posterior probabilities, the AUC of each
classifier is calculated asA1

i and A2
i . AUC difference is calculated in each fold asAi = A1

i − A2
i for i = 1, . . . , K. The

distribution of difference is normal since theA1
i and A2

i distributions are approximately normal (we extend the normality
assumption for errors to AUC values). Then, if the mean of this distribution equals to zero, we can say that classifiers have
equal AUC’s:

H0 : µ = 0 (1)

H1 : µ 6= 0 (2)

Then m =
∑K

i=1
Ai

K , S2 =
∑K

i=1
(Ai−m)2

K−1 . t statistic is calculated as
√

K.m
S ∼ tK−1. The null hypothesis is accepted at

significance levelα, if the test statistic is in the interval(−tα/2,K−1, tα/2,K−1).

IV. EXPERIMENTS

A. Experimental Setup

1) Data sets:We use a total of 15 data sets where 11 (aibocolor, chess, connect-4, mushroom, nursery, pageblock, report,
shuttle, spambase, thyroid, wave) are from UCI and 4 (ada, caravan, gina and sylva) are from IJCNN 2007 [9]. The datasets
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with the number of instances greater than 3000 or approximately 3000 are selected to decrease the dependency between
folds of 30-fold cross validation. Since two-class classification is applied, the datasets with more classes are converted to two
classes—this is done by selecting the two classes which are most confused by looking at the confusion matrix (We first use
1-nearest neighbor over all classes to choose these two).

2) Learning algorithms:We use five algorithms:

1) C4.5: C4.5 decision tree algorithm [10].
2) LP: Linear perceptron with softmax outputs trained by gradient-descent to minimize cross-entropy
3) k-NN: k-nearest neighbor. For the optimization ofk, values of 1, 3, 5, 7, 11, 21 are tried and the one with minimum

validation error is selected.
4) NB: naive nayes that is a parametric discriminator assuming independent inputs.
5) Ripper: Rule learning algorithm with 2 optimization steps [11].

3) Division of training, validation, and test sets:Our methodology is as follows: A data set is first divided intotwo parts,
with 1/3 as the test set,test, and2/3 as the training set,train-all. The training set,train-all, is then resampled using30 times
cross-validation to generatetrai, i = 1, . . . , 30, which are used to train the classifiers and the tests are run on the test set.

B. Overall Results

We compare 5 algorithms in a pairwise manner on 15 datasets using the pairedt test on misclassification errors or AUC
values at the significance level of 0.05, which makes a total of 150 comparisons. The null hypothesis of bothk-fold cv paired
t test on errors (error test) andk-fold cv pairedt test on AUC values (AUC test) are that the two populations have the same
mean. There are four possible cases:

• Both error test and AUC test accept the null hypothesis. Thiscase occured only 1 time.
• Error test accepts and AUC test rejects the null hypothesis.This case occured 10 times.
• Error test rejects and AUC test accepts the null hypothesis.This case occured 9 times.
• Both error test and AUC test reject the null hypothesis. Thiscase occured 130 times.

We now discuss some examples of these cases: Figure 2 shows the results onchessdataset forC4.5andRipperalgorithms,
where both the error test and our AUC test accepts the null hypothesis. It can be seen in (a) that the error distribution of
the two algorithms overlap and in (b) that the AUC distribution of the two algorithms also overlap. ROC graph supports the
agreement, since ROC curves of algorithms overlap (c) and 0.5 threshold points shown on the ROC curves (by circle and
triangle for the two algorithms) also overlap.

Figure 3 shows the second case where the error test accepts and our AUC test rejects the null hypothesis. In Figure 3(a), it
can be seen that the error distributions of thek-NN (white) andRipper(black) on thereport dataset overlap and this supports
the decision of the error test. In Figure 3(b), it can be seen that AUC distributions are significantly separated. In Figure 3(c),
we see why; it can be seen that ROC curves ofk-NN (white) are above the ROC curves of theRipper (black). For large
values ofθ; this implies that the two algorithms have different performances in such cases. The marked points (decisions at
the threshold of 0.5) overlap and this supports the error test decision but if we look overall, we see that the algorithms have
indeed different behavior over all possible thresholds. Wesee that the AUC test is able to detect differences that the error test
cannot and that is why, we can say that the AUC test has higher power.

Figure 4 shows the third case where error test rejects and ourAUC test accepts the null hypothesis that the algorithms
have equal expected performance. If we look at Figure 4(a), we see that there is a significant difference in error distributions
of k-NN (white) andNB (black) on theshuttledataset. Looking at Figure 4(b), it can be seen that there is not a significant
difference in AUC distributions. In Figure 4(c), the ROC curves intersect. To the left of the intersection,NB (black) is better
and to the right,k-NN (white) is better. Though, the error test says that they are different, if we average over all possible losses
(as AUC does), we see that there is no significant difference.The AUC test does not reject such cases and can therefore be
said to have lower type I error.

Figure 5 is an example of the fourth case where both the error test and our AUC test reject the null hypothesis. In Figure
5(a) and 5(b), the error and area distributions ofC4.5 (white) andLP (black) onnurserydataset are well-separated. Figure
5(c) also supports this claim, ROC curves ofLP (black) are over the ROC curves ofC4.5 (white) and the threshold marks are
also quite well-separated.

V. RELATED WORK

Hanley and McNeil [4] stated that Wilcoxon statistic is an estimate of ‘true’ area under the ROC curve, the area constructed
from an infinite sample. They have also given a standard errorformula which takes five parameters: the probability that two
randomly chosen abnormal images will both be ranked higher than a randomly chosen normal image, the probability that
one randomly chosen positive example will be ranked higher than two randomly chosen negative examples, the number of
positive examples, the number of negative examples and the estimated area under the ROC curve. However, for calculating
the standard error of the estimated AUC, the distributions of the positive and negative examples should also be known. Using
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Fig. 2. An example for the case 1, where both error test and ourAUC test accepts the null hypothesis
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Fig. 3. An example for the case 2, where error test accepts andour AUC test rejects the null hypothesis
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Fig. 4. An example for the case 3, where error test rejects andour proposed AUC test accepts the null hypothesis
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Fig. 5. An example for the case 4, where both error test and ourproposed AUC test rejects the null hypothesis

the probabilities defined in the calculation of standard error, they have also given a formula that finds the required number of
positive and negative examples for detecting the difference of two AUC’s depending on the specified type I and type II error
rates (It also requires specific distributions for the values of positive and negative samples).

Hanley and McNeil [12] have argued that comparing differentROC curves with a single dataset limits their usefulness.
They state that there is a correlation between AUC’s calculated from the same dataset, where correlation is included in the
calculation of the standard error of difference in AUC’s. They have noticed that a paired test can be used for comparing two
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algorithms and therefore included the correlation in the statistical test for applying the behaviour of pairedt test. A z test
statistic is constructed using this standard error and the null hypothesis that ‘true’ AUC’s are equal. They state that they make a
correction for pairing liket test. However, we directly use the pairedt test, by applying cross-validation to dataset. Therefore,
their motivation supports our work. Pairedt test is applied to AUC results, but it is not compared with an error test. It is only
used for evaluating the results [13].

Cortes and Mohri [14] have also proposed to calculate confidence intervals for AUC. A confidence interval for AUC has
been derived from the confidence interval of error. First, they define expectation and variance of AUC in terms of the expected
error, the number of negative instances and the number of positive instances by using the Wilcoxon-Mann-Whitney statistic.
Using these values, the confidence intervals are constructed without any assumption on the distribution for AUC. For large
values of the sample size, they make a normal distribution assumption for error.

We argue that there are two weaknesses in their work. First, using error for deriving a confidence interval for AUC is not a
good idea, because as we show below, in some cases, AUC intervals can be significantly different although the error intervals
are not significantly different. However, their confidence interval formulations give the same AUC interval for the sameerror
value. For comparing our results with their results, we trained and tested the classification algorithms without cross-validation
and substituted the error results in their formulations since they use one error value.

In Figure 6 (a), the error distributions of the classifiersRipper and LP on datasetada are shown, they overlap indicating
the equality of their means and the error test can not reject the null hypothesis that the means of these error distributions are
equal. However, in Figure 6(b), it can be seen that the corresponding AUC distributions are separated despite the overlapping
of error distributions and our AUC test rejects the null hypothesis that the means of these AUC distributions are equal. The
dashed-dotted lines above the distributions in Figure 6(b)are the AUC confidence intervals found by the method of Cortes
and Mohri [14]. Their confidence intervals do not show a good fit to the empirical AUC distributions since AUC confidence
intervals can be significantly different although error confidence intervals are not. Their confidence intervals also fail when the
error results are different. In Figure 7(a), the error distributions of the classifiersk-NN andLP on datasetadaare shown, they
do not overlap and the error test can not reject the null hypothesis that the means of these AUC distributions are equal. In
Figure 7(b), the AUC distributions do not overlap and our AUCtest can not reject the null hypothesis that the means of these
AUC distributions are equal. The confidence intervals of Cortes and Mohri do not fit to the distributions. Another point to
note is that, as seen in Figures 6(b) and 7(b), their confidence intervals are too large because their approach is nonparametric.
However, they are inefficient when the sufficient conditionsfor the distribution assumptions are met.

Another approach for finding the confidence intervals for AUChas been proposed in [15]. Agarwal et al. give a large
deviation bound for the distribution independent case. In Figures 6(b) and 7(b), their confidence intervals are shown with
dotted lines above the AUC distributions. The figures support their claim that confidence intervals are too large since no
distribution assumption is made. They state that the AUC value follows an asymptotically normal distribution and for largeN ,
the normal approximation can be used to obtain a tighter bound (as we do for deriving the parametrict test). They also state
that one can estimate the actual variance of AUC directly from data for obtaining tighter intervals, for example, one canuse
resampling methods to approximate it that they can be usefulin practice despite being approximate. This is similar to what
we have done in our proposed test. They also criticize the AUCdefinition of Cortes and Mohri because of the same reason
that we have stated above. They argue that AUC and error are different metrics, therefore different analyses should be done
for them.

AUC values have been used to compare classifiers over multiple datasets [2]. However, in our work, we try to gain an
insight to the difference in the behavior of the error and AUCtests. J. Demsar compares two classifiers with pairedt test over
multiple datasets. They state that this test makes normality assumption on the difference of random variables and for this, the
dataset size should be approximately 30. They also use the Wilcoxon signed-ranks test since it is nonparametric compared to
the pairedt test. They calculate AUC values by applying 5-fold internalcross validation and take the average of them, thus
they do not apply test on these values like us. They compare AUC of different C4.5 algorithms over 14 datasets. They state that
commensurability of differences over datasets can be assumed and no distribution assumption is done in this nonparametric test
compared to the pairedt test. They compare AUC’s of C4.5 algorithms with 5-fold internal cross validation over 14 datasets
using the Friedman test which is a nonparametric version of ANOVA.

The ROC curves are preferred when there is class skewness and/or different misclassification costs. The effect of class
distribution on error and AUC is explored in [16]. On the other hand, we explore the effect of imbalanced cost in error and
AUC.

VI. D ISCUSSION

It has been known that the ROC curve or the AUC value gives moreinformation than the misclassification error [5], but
still, tests in literature all use misclassification error.

In this paper, we propose a novel statistical comparison procedure based on AUC of the ROC curves. To check for significant
difference (unaffected by randomness), for each classifier, we usek-fold cross validation to construct multiple ROC curves
and calculate an AUC value for each. We then use the pairedt test to test hypotheses on such AUC distributions.
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Fig. 6. Confidence intervals for error and AUC for the case where the error test accepts and the AUC test rejects the null hypothesis
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Fig. 7. Confidence intervals for error and AUC for the case where the both error test and the AUC test reject the null hypothesis

To validate our test, we compare it with the pairedt test on misclassification errors. We see that our AUC test andthe one
using error give consistent decisions on a high proportion of cases. When they disagree, we believe that the one using AUC
values are more to be trusted because they compare under a setof possible losses and not just a single one of equal loss for
false positives and false negatives.

Both the error test and our test use the central limit theoremwhich states that the sum of a large number of iid random
variables (the Bernoulli random variables corresponding to 0/1 decisions on test instances) is approximately normal.We see in
practice that the distributions for error or AUC are sometimes not normal, probably due to dependence between folds which
share data and the fact that 30 is a relatively small number for central limit theorem to hold. We therefore believe that itmay
also be interesting to check how nonparametric tests can be used to compare AUC distributions; this is future work.

REFERENCES

[1] T. G. Dietterich, “Approximate statistical tests for comparing supervised classification learning classifiers,”Neural Computation, vol. 10, pp. 1895–1923,
1998.

[2] J. Demsar, “Statistical comparisons of classifiers overmultiple data sets,”Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.



8

[3] A. E., “Combined 5×2 cv F test for comparing supervised classification learning classifiers,” Neural Computation, vol. 11, pp. 1975–1982, 1999.
[4] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver operating characteristic (ROC) curve,”Radiology, vol. 143, pp. 29–36,

1982.
[5] T. Fawcett, “An introduction to ROC analysis,”Pattern Recognition Letters, vol. 27, pp. 861–874, 2006.
[6] C. X. Ling, J. Huang, and H. Zhang, “AUC: a better measure than accuracy in comparing learning algorithms,” inIn Proc. of IJCAI03. Springer, 2003,

pp. 329–341.
[7] J. Huang, J. Lu, and C. Ling, “Comparing naive Bayes, decision trees, and SVM with AUC and accuracy,” inProceedings of the Third IEEE International

Conference on Data Mining, 2003, pp. 553–556.
[8] A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,”Pattern Recognition, vol. 30, pp. 1145–1159,

1997.
[9] I. Guyon, A. R. S. Azar, G. Dror, and G. Cawley, “Agnostic learning vs. prior knowledge challenge & data representation discovery workshop,”

Florida, 2007. [Online]. Available: http://www.agnostic.inf.ethz.ch/datasets.php
[10] J. R. Quinlan,C4.5: Programs for Machine Learning. San Meteo, CA: Morgan Kaufmann, 1993.
[11] W. W. Cohen, “Fast effective rule induction,” inThe Twelfth International Conference on Machine Learning, 1995, pp. 115–123.
[12] J. A. Hanley and B. J. McNeil, “A method of comparing the areas under receiver operating characteristic curves derived from the same cases,”Radiology,

vol. 148, pp. 839–843, 1983.
[13] H. C. Bravo, G. Wahba, K. E. Lee, B. E. K. Klein, R. Klein, and S. K. Iyengar, “Examining the relative influence of familial, genetic, and environmental

covariate information in flexible risk models,” inProceedings of the National Academy of Sciences of the United States of America (PNAS), vol. 106,
2009, pp. 8128–8133.

[14] C. Cortes and M. Mohri, “Confidence intervals for the area under the ROC curve,” inAdvances in Neural Information Processing Systems 17, NIPS
2004, Vancouver, Canada, 2004.

[15] S. Agarwal, T. Graepel, R. Herbrich, and D. Roth, “Generalization bounds for the area under the ROC curve,”Journal of Machine Learning Research,
vol. 6, pp. 393–425, 2005.

[16] G. M. Weiss and F. Provost, “Learning when training dataare costly: The effect of class distribution on tree induction,” Journal Of Artificial Intelligence
Research, vol. 19, pp. 315–354, 2003.


