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Abstract

Statistical tests in the literature mainly use error rateclamparison. Receiver Operating Characteristics (RO®)esuand/or
Area Under the ROC Curve (AUC) can also be used for compariagsifier performances under a spectrum of loss values.
A ROC curve and hence an AUC value is calculated from oneitgftest pair and to average over randomness in folds, we
propose to usé-fold cross-validation to generate a set of ROC curves an€ Adlues to which we can fit a distribution and
test hypotheses on. Experiment results on 15 datasets bigliffgrent classification algorithms show that our propbsest using
AUC values is to be preferred over the usual paitetdst on misclassification errors because it can detect a&guises and
differences which the error test cannot.

I. INTRODUCTION

Comparing the performances of classifiers is a critical lgmobin machine learning. In the literature, to compare the
generalization error of learning algorithms, statistitadts have been proposed [1], [2]. In choosing between tamieg
algorithms, one can use a pairwise test to compare theirglkzation error and select the one that has lower erroriciiy,
cross-validation is used to generate a set of trainingdatibin folds, and we compare the expected error on the valida
folds after training on the training folds. Examples of suekts are parametric tests, suchka®ld pairedt test,5 x 2 cv ¢
test [1],5 x 2 cv F test [3], nonparametric tests, such as the sign test andrRap’s test, or range tests, such as Wilcoxon
signed rank test.

AUC has been related to th&filcoxonstatistic. Wilcoxon statistic has been defined as an estifttrue’ area under the
ROC curve, area constructed from an infinite sample [4]. dmai detection, people have been using ROC curves to viguali
the trade-off between hit rate and false alarm rate [5]. Aneder the ROC curve (AUC) is also used for comparing classifie
However, ROC and AUC use a single training and testing pdjr[f8, [8]. In this paper, we extend this idea and uséold
cross-validation to generafe ROC curves and hende AUC values and then we fit a distribution to the set of AUC value
and test hypothesis on these distributions.

In Section Il, performance metrics for comparing classsfi@OC curves and AUC are discussed. In Section Ill, our AUC
based statistical test is explained. In Section IV, the grpantal setup and results of the experiments are givenebti&

V, we give the related work on ROC curve and AUC. We conclud&eation VI.

Il. STATISTICAL METHODS FORCOMPARING CLASSIFICATION ALGORITHMS
A. Performance Metrics for Classifiers
If we define class labels of the two-class classification f@mbas positive and negative, the confusion matrix that asvsh
in Table | contains the following items:

« True positive {'P): If both the class label and the predicted class are pesitiv

« False negative{ N): If the class label is positive and the predicted class Fatiee.
« False positive £ P): If the class label is negative and the predicted class sitige.
« True negative ' N): If both the class label and the predicted class are negativ

Different metrics calculated from these values are usethanliterature:

hit rate = e
~ TP+ FN
false alarm rate = P
~ TN+4+FP
FP+ FN

error =

TP+TN+FP+FN
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TABLE |
CONFUSION MATRIX

Predicted Class

True Class Positive Negative
Positive TP FN
Negative FP TN

TPR

FPR

Fig. 1. Example ROC Curve: different treshold points arekmdron the upper ROC curve. Lower diagonal line is the ROCetiov random prediction.

B. ROC curves

ROC curves are being used in signal processing to plot thie-toéf between hit rate and false alarm rates. They allow
visualization of performance for a set of conditions indted just the misclassification error. Hit rate or true pesitrate
(TPR) defines they axis and false alarm rate or false positive rate (FPR) defines: axis. A classifier is good if it has a
high hit rate and a low false alarm rate, that is, if the cusseloser to the upper left corner. The diagonal line indahe
curve for random prediction (see Figure 1)

In a two-class problem, if the posterior probability of thesjiive class is greater than the posterior probabilityhefhiegative
class, the classifier predicts the class label of a testrinstas positive, otherwise it predicts the class label aativeg This
is equivalent to checking if the posterior probability okthositive class is greater than ttigeshold valueof 6§ = 0.5. For
a given test set, a ROC curve is constructed by plotting theatés ony axis and false alarm rates in axis for different
threshold values. The ROC curve construction algorithmivergin [5].

Let us define the positive class as cléagsand the negative class 5. Given the loss matrix in Table I, for a test instance
x, the risk of choosing”; is:

R(Cilz) = M1P(Cilz) 4+ A2P(Calx)

and the risk of choosing’; is:
R(Cslz) = P(Chz)

Then we choosé€); if

that is, if
P(Cy]x)
> A
P(Calx)
Since P(C1|z) + P(Caz|z) = 1, this gives
P(Cilx)
=Py
P(C’1|x) > L

14+ A



TABLE Il
LOSS MATRIX

C1 C2
Cq 0 A
Co 1 0

We see that the threshold of 0.5 which we use to calculatelasisification error corresponds o= 1, that is, when a false
positive and a false negative has equal loss. We get a varidtyresholds when we vary:

A

h=—"—
1+ A

A=05 — 6=1/3
A=1 — 0=1/2
A=2 — 0=2/3

A=10 — 6=10/11

That is, the threshold points on the ROC curve indicate\thialues in the risk calculation. This is the reason why usi@CR
curve (or AUC value, as we will see shortly) is better thamgsnisclassification error because error gives equal engphaad
makes no distinction between false positives and falsetivegaand thus may not be the best measure for many apphesatio
ROC curve (and AUC) takes a set of possible loss proportistasaccount and hence average over that defines a more robust
measure.

If the ROC curve of the first classifier is always over the RO@vewf the second classifier, we can easily say that the
first classifier is better than the second classifier. But ¢hise does not always happen. In some cases, the ROC curve of th
first classifier may be over the ROC curve of the second clessifione part, whereas the second classifier's curve is beer t
ROC curve of the first one in some other part; this implies thattwo classifiers are preferred under different loss d@r.
ROC is a curve; one may reduce the ROC curve to a single valing tteearea under ROC curv@AUC). If a ROC curve is
closer to the upper left corner, the area gets closer to 1.aféa under the ROC curve is estimated by summing tropezoidal
areas formed by successive points on the ROC curve. A clkxsgifih a greater AUC is said to be better than a classifier with
a smaller AUC. AUC calculation algorithm is given in [5].

IIl. PROPOSEDTECHNIQUE

In general, a classifier is trained using a training set amdRBOC curve is constructed and AUC is calculated only once
using a test set. To average over randomness in the trainieh@esting split, one can use more than one training anchtesti
pair, which results in multiple ROC curves and AUC valuese Timin idea of this paper is to fit a distribution to these value
and test hypotheses on such distributions.

We usek-fold cross-validation to generafe training sets and traitk classifiers whose ROC curves and AUC values we
calculate over a test set. At the end, for each classificatigarithm we have: AUC values. To have paired test, we use
the same training and test sets for all algorithms. Aftedsathe two classification algorithms can be compared byyampl
the pairedt test with the null hypothesis that two classifiers have threesanean AUC values and the alternative hypothesis
that the two AUC means are different.

k-fold cross-validated pairetitest will be called asAUC testin the rest of the paper. In AUC test, there are K train-test
set pairs because of applyirigfold cross-validation. Each classification algorithmriaitied on training sef; and posterior
probabilities are calculated by testing on test et , ¢ = 1,..., K. Using these posterior probabilities, the AUC of each
classifier is calculated ad}! and A?. AUC difference is calculated in each fold as = A} — A? for i = 1,..., K. The
distribution of difference is normal since th&! and A? distributions are approximately normal (we extend the radity
assumption for errors to AUC values). Then, if the mean of thistribution equals to zero, we can say that classifiere hav
equal AUC’s:

Hy:p=0 1)
Hy:p#0 (2)
Thenm = YK, 482 = PO % ¢ statistic is calculated as/% ~ tx_1. The null hypothesis is accepted at

significance levek, if the test statistic is in the interva-t, /2 k—1,ta/2,K—1)-

IV. EXPERIMENTS
A. Experimental Setup

1) Data sets:We use a total of 15 data sets where aib¢color, chess, connect-4, mushroom, nursery, pagkpteport,
shuttle, spambase, thyroid, waware from UCI and 44da, caravan, gina and sylyare from [JCNN 2007 [9]. The datasets



with the number of instances greater than 3000 or approgima000 are selected to decrease the dependency between
folds of 30-fold cross validation. Since two-class classifion is applied, the datasets with more classes are deaver two
classes—this is done by selecting the two classes which ast confused by looking at the confusion matrix (We first use
1-nearest neighbor over all classes to choose these two).

2) Learning algorithms:We use five algorithms:

1) C4.5 CA4.5 decision tree algorithm [10].

2) LP: Linear perceptron with softmax outputs trained by gratigascent to minimize cross-entropy

3) k-NN: k-nearest neighbor. For the optimization /af values of 1, 3, 5, 7, 11, 21 are tried and the one with minimum
validation error is selected.

4) NB: naive nayes that is a parametric discriminator assumidgpendent inputs.

5) Ripper Rule learning algorithm with 2 optimization steps [11].

3) Division of training, validation, and test set®ur methodology is as follows: A data set is first divided iti@ parts,
with 1/3 as the test setest and2/3 as the training setrain-all. The training setfrain-all, is then resampled usirgf) times
cross-validation to generatea;, i = 1,...,30, which are used to train the classifiers and the tests arenuhentest set.

B. Overall Results

We compare 5 algorithms in a pairwise manner on 15 dataseig tise paired: test on misclassification errors or AUC
values at the significance level of 0.05, which makes a tdtdb0 comparisons. The null hypothesis of battiold cv paired
t test on errors (error test) aridfold cv pairedt test on AUC values (AUC test) are that the two populationehhe same
mean. There are four possible cases:

« Both error test and AUC test accept the null hypothesis. Tage occured only 1 time.
« Error test accepts and AUC test rejects the null hypoth@sis case occured 10 times.
« Error test rejects and AUC test accepts the null hypoth@sis case occured 9 times.
« Both error test and AUC test reject the null hypothesis. Taise occured 130 times.

We now discuss some examples of these cases: Figure 2 shewsstiits orchessdataset folC4.5andRipperalgorithms,
where both the error test and our AUC test accepts the nulbttngsis. It can be seen in (a) that the error distribution of
the two algorithms overlap and in (b) that the AUC distribatiof the two algorithms also overlap. ROC graph supports the
agreement, since ROC curves of algorithms overlap (c) aBdH¥eshold points shown on the ROC curves (by circle and
triangle for the two algorithms) also overlap.

Figure 3 shows the second case where the error test acceptaiaAUC test rejects the null hypothesis. In Figure 3(a), it
can be seen that the error distributions of tABIN (white) andRipper(black) on thereport dataset overlap and this supports
the decision of the error test. In Figure 3(b), it can be séah AUC distributions are significantly separated. In FegG(c),
we see why; it can be seen that ROC curves:éfN (white) are above the ROC curves of tRépper (black). For large
values of#; this implies that the two algorithms have different penfi@ances in such cases. The marked points (decisions at
the threshold of 0.5) overlap and this supports the errdrdesision but if we look overall, we see that the algorithraséh
indeed different behavior over all possible thresholds.séke that the AUC test is able to detect differences that ttog st
cannot and that is why, we can say that the AUC test has higheep

Figure 4 shows the third case where error test rejects andA0@ test accepts the null hypothesis that the algorithms
have equal expected performance. If we look at Figure 4(a)see that there is a significant difference in error distiding
of k-NN (white) andNB (black) on theshuttledataset. Looking at Figure 4(b), it can be seen that ther@tiarsignificant
difference in AUC distributions. In Figure 4(c), the ROC wees intersect. To the left of the intersectiowB (black) is better
and to the rightk-NN (white) is better. Though, the error test says that they dferent, if we average over all possible losses
(as AUC does), we see that there is no significant differemhe. AUC test does not reject such cases and can therefore be
said to have lower type | error.

Figure 5 is an example of the fourth case where both the esstrand our AUC test reject the null hypothesis. In Figure
5(a) and 5(b), the error and area distributionsCdf.5 (white) andLP (black) onnurserydataset are well-separated. Figure
5(c) also supports this claim, ROC curvesldt (black) are over the ROC curves 6#.5 (white) and the threshold marks are
also quite well-separated.

V. RELATED WORK

Hanley and McNeil [4] stated that Wilcoxon statistic is atiraate of ‘true’ area under the ROC curve, the area constduct
from an infinite sample. They have also given a standard éoronula which takes five parameters: the probability that tw
randomly chosen abnormal images will both be ranked highan ta randomly chosen normal image, the probability that
one randomly chosen positive example will be ranked highan ttwo randomly chosen negative examples, the number of
positive examples, the number of negative examples anddtimated area under the ROC curve. However, for calculating
the standard error of the estimated AUC, the distributiohnhe positive and negative examples should also be knowimgUs
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Fig. 2. An example for the case 1, where both error test andAo\@ test accepts the null hypothesis
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Fig. 3. An example for the case 2, where error test acceptoandUC test rejects the null hypothesis
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Fig. 4. An example for the case 3, where error test rejectsoamgroposed AUC test accepts the null hypothesis
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Fig. 5. An example for the case 4, where both error test andpmposed AUC test rejects the null hypothesis

the probabilities defined in the calculation of standardreithey have also given a formula that finds the required rermob
positive and negative examples for detecting the diffezenfctwo AUC’s depending on the specified type | and type Il erro
rates (It also requires specific distributions for the valoé positive and negative samples).

Hanley and McNeil [12] have argued that comparing differBQC curves with a single dataset limits their usefulness.
They state that there is a correlation between AUC’s caledldrom the same dataset, where correlation is includedien t
calculation of the standard error of difference in AUC’s.eJthave noticed that a paired test can be used for comparimg tw



algorithms and therefore included the correlation in thaistical test for applying the behaviour of pairedest. A = test
statistic is constructed using this standard error and titlhgpothesis that ‘true’ AUC’s are equal. They state tiegyt make a
correction for pairing liket test. However, we directly use the pairetkst, by applying cross-validation to dataset. Therefore,
their motivation supports our work. Pairédest is applied to AUC results, but it is not compared with enoretest. It is only
used for evaluating the results [13].

Cortes and Mohri [14] have also proposed to calculate configléntervals for AUC. A confidence interval for AUC has
been derived from the confidence interval of error. Firgytbefine expectation and variance of AUC in terms of the eggec
error, the number of negative instances and the number dfiygosistances by using the Wilcoxon-Mann-Whitney statis
Using these values, the confidence intervals are consttweithout any assumption on the distribution for AUC. Forglar
values of the sample size, they make a normal distributisnragtion for error.

We argue that there are two weaknesses in their work. Figgiglerror for deriving a confidence interval for AUC is not a
good idea, because as we show below, in some cases, AUCalstean be significantly different although the error in&sv
are not significantly different. However, their confidenngeival formulations give the same AUC interval for the saam®r
value. For comparing our results with their results, weniedi and tested the classification algorithms without cuadistation
and substituted the error results in their formulationgeithey use one error value.

In Figure 6 (a), the error distributions of the classifi&pperand LP on datasetda are shown, they overlap indicating
the equality of their means and the error test can not refechtll hypothesis that the means of these error distribatare
equal. However, in Figure 6(b), it can be seen that the cporeding AUC distributions are separated despite the oppithay
of error distributions and our AUC test rejects the null hiyasis that the means of these AUC distributions are equed. T
dashed-dotted lines above the distributions in Figure &¢B)the AUC confidence intervals found by the method of Cortes
and Mohri [14]. Their confidence intervals do not show a goobdofithe empirical AUC distributions since AUC confidence
intervals can be significantly different although error fidence intervals are not. Their confidence intervals algonMaen the
error results are different. In Figure 7(a), the error disiions of the classifiers-NN andLP on dataseadaare shown, they
do not overlap and the error test can not reject the null hggis that the means of these AUC distributions are equal. In
Figure 7(b), the AUC distributions do not overlap and our AGt can not reject the null hypothesis that the means oéthes
AUC distributions are equal. The confidence intervals oft€oand Mohri do not fit to the distributions. Another point to
note is that, as seen in Figures 6(b) and 7(b), their confelertervals are too large because their approach is nongatiam
However, they are inefficient when the sufficient conditiémisthe distribution assumptions are met.

Another approach for finding the confidence intervals for A& been proposed in [15]. Agarwal et al. give a large
deviation bound for the distribution independent case. ijufes 6(b) and 7(b), their confidence intervals are showth wi
dotted lines above the AUC distributions. The figures suppgir claim that confidence intervals are too large since no
distribution assumption is made. They state that the AUQevébllows an asymptotically normal distribution and forga vV,
the normal approximation can be used to obtain a tighter d¢as we do for deriving the paramettidest). They also state
that one can estimate the actual variance of AUC directlyjnfdata for obtaining tighter intervals, for example, one cam
resampling methods to approximate it that they can be usefptactice despite being approximate. This is similar taatvh
we have done in our proposed test. They also criticize the Aldfiition of Cortes and Mohri because of the same reason
that we have stated above. They argue that AUC and error Hezedit metrics, therefore different analyses should beedo
for them.

AUC values have been used to compare classifiers over naultiptasets [2]. However, in our work, we try to gain an
insight to the difference in the behavior of the error and Atd€ts. J. Demsar compares two classifiers with pdiredt over
multiple datasets. They state that this test makes noyradsumption on the difference of random variables and fist the
dataset size should be approximately 30. They also use th®Xvh signed-ranks test since it is nonparametric contptore
the paired: test. They calculate AUC values by applying 5-fold interoadss validation and take the average of them, thus
they do not apply test on these values like us. They compai@ éddifferent C4.5 algorithms over 14 datasets. They stadé t
commensurability of differences over datasets can be as$amd no distribution assumption is done in this nonparnacrest
compared to the pairetdtest. They compare AUC's of C4.5 algorithms with 5-fold migl cross validation over 14 datasets
using the Friedman test which is a nonparametric version NOXA.

The ROC curves are preferred when there is class skewnegasr atifferent misclassification costs. The effect of class
distribution on error and AUC is explored in [16]. On the atland, we explore the effect of imbalanced cost in error and
AUC.

VI. DISCUSSION

It has been known that the ROC curve or the AUC value gives rimdogmation than the misclassification error [5], but
still, tests in literature all use misclassification error.

In this paper, we propose a novel statistical comparisongaiore based on AUC of the ROC curves. To check for significant
difference (unaffected by randomness), for each classifierusek-fold cross validation to construct multiple ROC curves
and calculate an AUC value for each. We then use the paitesdt to test hypotheses on such AUC distributions.
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To validate our test, we compare it with the pairetkst on misclassification errors. We see that our AUC testthadne
using error give consistent decisions on a high proportiooases. When they disagree, we believe that the one using AUC
values are more to be trusted because they compare undeofmetsible losses and not just a single one of equal loss for

false positives and false negatives.
Both the error test and our test use the central limit theondrich states that the sum of a large number of iid random

variables (the Bernoulli random variables correspondin@/L decisions on test instances) is approximately noiilalsee in
practice that the distributions for error or AUC are somesmmot normal, probably due to dependence between foldshwhic
share data and the fact that 30 is a relatively small numbecdotral limit theorem to hold. We therefore believe thaniy
also be interesting to check how nonparametric tests carsée 10 compare AUC distributions; this is future work.
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